
Short-term state in SPHINCS
by Moritz Neikes

February 2020

Master Thesis in Computer Science
Supervised by dr. Peter Schwabe

Second reader: dr. Andreas Hülsing

Radboud University Nijmegen

moritz@post-apocalyptic-crypto.org

Preface

The work on this thesis started in early 2016, and was finished around September
2017, aside from minor issues. However, before I was able to complete and
publish this thesis, I had to take a break for mental health reasons. In December
2019, I resumed my work, and wrapped up any outstanding issues by early
February 2020.

Because of that, the research in this thesis is, for the most part, based on the
current state of research around hash-based signatures as it was in 2017, and
newer developments, including the work on SPHINCS+ (see https://sphincs.
org), have not been taken into account.

In particular, there is significant overlap between the work in “Improving State-
less Hash-based Signatures” by Aumasson and Endignoux [2] and my thesis,
but by the time their paper was published, on September 25, 2017, the vast
majority of my research was already completed, reaching similar conclusions.

In this context, I would like to refer to the git histories of the two projects I
created during my work on this thesis, which date back to April 2016. The
histories can be found here:

• For my work on SPHINCS short-term states:
https://github.com/25A0/sts-sphincs/commits/master

• For my work on authentication sets:
https://github.com/25A0/authentication-sets/commits/master

I add this preface for the sake of transparency, and to avoid confusion about
the overlap between my work and the work of Aumasson and Endignoux.

https://sphincs.org
https://sphincs.org
https://github.com/25A0/sts-sphincs/commits/master
https://github.com/25A0/authentication-sets/commits/master

Abstract

There is an ongoing and well-funded effort to build practical quantum comput-
ers. Whether and when this effort will bear fruit is difficult to predict, but if it
does, then many widely deployed cryptographic signature schemes will break.
Practical post-quantum cryptography is still rare, but not unheard of. SPHINCS
is a practical post-quantum stateless hash-based signature scheme that is built
on well-understood cryptographic primitives. Its stateless character makes it
easy to use in practice, but also introduces some inefficiency.

This thesis explores two ways in which a short-term state can be added to
SPHINCS. As a middle ground between statefulness and statelessness, a short-
term state can combine a significant performance boost with the ease of use
that comes with stateless signature schemes. Furthermore this thesis introduces
a novel way to combine authentication paths in binary hash trees. This has a
practical application in HORST, a hash-based signature scheme that is used as
a building block in SPHINCS.

Acknowledgments

I want to thank Peter Schwabe for his continuous support and trust, not only for
this thesis, but throughout the entirety of the past years. I greatly appreciate
his guidance, which has always been a valuable and reassuring anchor for me.
I also want to thank Andreas Hülsing for his helpful explanations and valuable
feedback, and for his willingness to remain part of the project despite some
serious delays along the way.

I would like to thank Meike for her invaluable support and encouragement, and
for being so understanding throughout the stressful final weeks of the project.
Finally, I want to thank my friends and family for their valuable support in vari-
ous ways, and in particular Maurice Knoop, for his support and encouragement,
and for always being ready to provide constructive feedback.

Contents

1 Introduction 3
1.1 Cryptographic hash functions . 5
1.2 Hash-based signature schemes . 6

1.2.1 Stateful vs stateless signature schemes 6
1.3 Contributions and overview . 7

2 SPHINCS 9
2.1 Hash trees . 10

2.1.1 Authentication paths . 10
2.1.2 L-trees . 12

2.2 The WOTS signature scheme . 12
2.2.1 WOTS Key generation . 14
2.2.2 WOTS Signing . 14
2.2.3 WOTS Verification . 14

2.3 The HORST signature scheme 15
2.3.1 HORST Key generation 15
2.3.2 HORST Signing . 16
2.3.3 HORST Verification . 16
2.3.4 The vagueness of “few” . 16

2.4 simple-SPHINCS . 17
2.4.1 The SPHINCS hypertree 17
2.4.2 Key generation . 20
2.4.3 Signing . 20
2.4.4 Verifying . 21
2.4.5 simple-SPHINCS-256 . 21
2.4.6 Differences to SPHINCS 22

2.5 Multi-target attacks in SPHINCS 22
2.5.1 Multi-target attack surfaces in SPHINCS 23
2.5.2 Mitigating multi-target attacks 25

3 Reducing HORST signature size 27
3.1 HORST signature size in SPHINCS 27
3.2 HORST Authentication sets . 28

3.2.1 Combining authentication paths 28
3.2.2 Authentication-set size . 30
3.2.3 Best-case and worst-case scenarios 32

3.3 Implementing HORST with authentication sets 36
3.3.1 Naïve implementation . 36

1

3.3.2 Efficient implementation 37
3.3.3 Using authentication sets in HORST 38

3.4 Practical aspects of HORST authentication sets 40

4 Two approaches to short-term state in SPHINCS 43
4.1 The benefit of state in SPHINCS 43
4.2 Challenges of stateful signature schemes 44
4.3 Short-term state in SPHINCS . 45
4.4 Approach 1: Iterate through lowest subtree 46

4.4.1 Impact on security assumptions 47
4.5 Approach 2: Add a short-term subtree below HORST 51

4.5.1 Impact on security assumptions 52
4.6 The two approaches in comparison 53
4.7 Parameter discussion . 53

4.7.1 Sequential batch signing 54
4.7.2 Subtree batch signing . 54

4.8 Creating successive short-term states 56

5 Implementation and results 58
5.1 Benefits of batch signing . 58
5.2 Results . 59

5.2.1 Utilization . 60
5.3 Conclusion . 61

A Fast and flexible heterogeneous buffers in C 69

2

Chapter 1

Introduction

Cryptographic signatures have become an essential building block of digital
information exchange today. They are used to authenticate websites, software
and updates, and sometimes e-mails. But many of the signature schemes that
are in use today will be broken with the dawn of sufficiently powerful quantum
computers.

On the one hand, Shor’s algorithm [47] can be used on quantum computers
to factor integers, and to compute discrete logarithms in polynomial time. On
classical computers, these problems can be solved in exponential time at best.
Because of that, Shor’s algorithm breaks many commonly used cryptographic
signature schemes [30], most prominently RSA [46] and elliptic curve cryptog-
raphy, but also Diffie-Hellman key exchange [18].

On the other hand, Grover’s algorithm [28] can be used to find a specific element
in an unordered database of 2n elements in O(

√
2n) = O(2n/2) steps with

a > 50% success rate. Determining whether an element satisfies the search
condition should be possible in a single step. To some degree, this problem is
similar to symmetric encryption: An n bit key is just one entry in a database
of 2n elements containing all possible keys. An attacker wants to find the one
element that deciphers a given ciphertext. Under Grover’s algorithm, an n bit
key would then only deliver n/2 bits of security against a quantum-aided attack.
Because of that, it is argued that doubling the key size should be sufficient to
outweigh the advantage of a quantum-aided attack [7].

While the impact of Grover’s algorithm is not as devastating as the impact of
Shor’s algorithm, both need to be taken into consideration when designing cryp-
tographic algorithms for a world in which sufficiently powerful quantum comput-
ers exist. All publicly known advances in actually building quantum computers
are still far off the number of qubits that are required to break commonly used
cryptography today, but we continue to see significant improvements [11, 1]. At
the same time, new algorithms are discovered that might lower the number of
qubits necessary to break currently used signature schemes [8, 43].

This is not the first time that widely adapted cryptographic algorithms are at
the risk of being broken. Many early hash algorithms have been broken, and

3

have been replaced by better ones, but this process takes time.

Furthermore, someone in possession of a powerful quantum computer can not
only tinker with today’s signatures, but they could also try to recover secret
keys from pre-quantum signatures used in the past. This might allow them to
distribute malicious or modified firmware, documents, or mobile applications
with forged signatures. The sooner data is signed with post-quantum signature
schemes, the sooner will these attack vectors disappear.

Thus, even though quantum computers might not be able to break cryptographic
algorithms today, there is plenty of motivation to move towards post-quantum
cryptographic algorithms sooner rather than later. There are, however, not
many options for post-quantum algorithms that are widely adapted at this point.
NIST makes an effort to change this with a competition for post-quantum public-
key algorithms1.

SPHINCS [9], a stateless hash-based signature scheme, fits the goal of this
competition. This thesis attempts to make it even more appealing to transition
from traditional signature schemes to a post-quantum signature scheme, by
speeding up successive signatures creation in SPHINCS. This is especially useful
for server environments to generate many signatures with little latency. The
solution presented in this thesis can speed up the signature creation by a factor
of 30, and reduces the size of public and private keys.

In addition to hash-based signature schemes, there are other approaches to post-
quantum signature schemes.

Lattice-based signature schemes. Given n linearly independent basis vec-
tors b1, . . . , bn ∈ Rm, an n-dimensional lattice L is the set of all integer linear
combinations of these vectors: L(b1, . . . , bn) = {

∑n
i=1 xibi, x ∈ Z}. For exam-

ple, Z3 is a three-dimensional lattice that can be formed from the basis vectors
(1, 0, 0), (0, 1, 0), (0, 0, 1), but there are many other basis vectors from which Z3

could be formed, too.

Amongst the various lattice problems, there are a couple that are of particular
interest for cryptography: In the Shortest Vector Problem (SVP), the task is to
find the shortest non-zero vector in a lattice L, given a basis of a vector space.
In the Closest Vector Problem (CVP), given a lattice L, and a vector v in Rn
but not necessarily in L, the task is to find a vector in L that is closest to v.
Finally, in the Shortest Independent Vector Problem (SIVP), given a lattice L of
dimension n, the task is to find n linearly independent vectors that are shorter
than all basis vectors.

The hardness of these problems, and many variants, has been studied extensively
(see [49] for an overview). Lattices are well-studied in general, and for their use
in cryptographic constructions in particular [23, 15], including the impact that
quantum computers may have on their security [36].

The first lattice-based signature scheme by Goldreich et al. [26] has since
been broken [41], but new and yet unbroken signature schemes have been pro-
posed [24, 38, 29, 21].

1https://csrc.nist.gov/projects/post-quantum-cryptography

4

https://csrc.nist.gov/projects/post-quantum-cryptography

Multivariate signature schemes. Multivariate cryptography is centered
around the problem of finding a vector x ∈ Fn that solves a set of m poly-
nomial equations in n variables each. If the polynomials are of degree two, then
these systems are called Multivariate Quadratic (MQ) equations, a problem
that is known to be NP-complete for non-trivial n and m [50].

The first multivariate signature scheme was C∗, designed by Imai and Mat-
sumoto [34], and later broken by Patarin [42]. Patarin later published different
designs himself, and some modern multivariate signature schemes are still based
on some of Patarin’s concepts.

Multivariate cryptography is well-suited for devices with tight resource con-
straints [10], and has also been successfully implemented in hardware [3, 51].
While signature sizes in MQ signature schemes tend to be very small (in the
range of a few hundred bytes), public keys tend to be rather big [50].

Code-based signature schemes. Code-based public key encryption was
keyed by McEliece in 1978 [39], and is built atop the Syndrome Decoding prob-
lem, a problem that is known to be NP-complete [6].

McEliece-type public key encryption systems have been studied extensively over
the last forty years, the theory around code-based cryptography is generally
well understood, and “no significant quantum algorithmic developments appear
to be directly relevant to these decoding problems” [19, p. 762]. This makes
code-based public key encryption a promising method for post-quantum cryp-
tography, and variants of McEliece-type public key encryption systems exist for
signature schemes [16, 4].

1.1 Cryptographic hash functions

Hash functions typically map data of arbitrary size to a fixed-size output. They
are used in countless applications, ranging from data structures like hash tables
to version control systems like git.

Cryptographic hash functions are fundamental building blocks of digital signa-
tures and message authentication codes. Cryptographic hash functions are hash
functions that meet specific requirements. These requirements typically include
a subset of the following properties:

Collision resistance. It should be infeasible to find x, x′ such that x 6= x′ but
H(x) = H(x′).

Preimage resistance. Given H(x), it should be infeasible to find x.

Second preimage resistance. Given x, it should be infeasible to find x′, x′ 6=
x, such that H(x) = H(x′).

Undetectable. Let H : D → {0, 1}n be a hash function. H is undetectable if
an adversary cannot distinguish H(x) from an element of {0, 1}n chosen
uniformly at random.

5

The exact requirements depend on the applications, but most applications re-
quire the cryptographic hash function to be (second) preimage resistant.

1.2 Hash-based signature schemes

Hash-based signature schemes are constructed around properties of crypto-
graphic hash functions. Hash-based signature schemes are often agnostic of
the used hash function. If one particular hash function is broken, it can usually
be replaced by another hash function.

In [37], Lamport presented the first hash-based signature scheme. Take two val-
ues, x0, x1, and a cryptographic hash functionH, and compute y0 = H(x0), y1 =
H(x1). Treat x0, x1 as the secret key, and y0, y1 as the public key. To sign a
single bit b, publish xb. The verifier can then check H(xb)

?
= yb. Given that

the used hash function offers (second) preimage resistance, it is infeasible for an
attacker to find x′b such that H(x′b) = yb.

Lamport’s scheme is as secure as the underlying hash function, but leads to
impractical key and signature sizes. Winternitz improved Lamport’s scheme by
repeatedly applying the hash function to sign more bits at once (as mentioned
in [40, p. 227]). With Winternitz’ improvement, the scheme can offer more
reasonable signature and key sizes. However, both of these schemes have a
limitation that is unusual compared to signature schemes commonly used today:
Every key pair in the Lamport or Winternitz signature scheme can be used for
exactly one signature, since the signature reveals part of the secret key. This
limitation makes these so-called one-time signature (OTS) schemes hard to use
in practice by themselves.

In [40], Merkle presented a way to combine an arbitrary number of OTS key
pairs into a single key pair. In this Merkle signature scheme (MSS), a fixed
number of messages can then be signed with each key pair. Over the years,
many different improvements of MSS have been published [12, 33, 32, 14].

1.2.1 Stateful vs stateless signature schemes

Signature schemes that are commonly used today (RSA [46], ECDSA [35],
Ed25519) are stateless: signing a new message does not depend on messages
previously signed with the same key pair. In contrast to that, many hash-based
signature schemes are stateful, in that previously created signatures change how
a new signature is created.

One-time signature schemes (OTSS) like the Lamport OTSS, or the Winternitz
OTSS, are inherently stateful, as they can only be used once.

Other signature schemes offer a limited number of signatures with each key pair.
For example, the Merkle signature scheme [40] offers n signatures that can be
generated with each key pair, by associating n OTS public keys with the public
key of a Merkle signature scheme key pair, and using a previously unused OTS

6

for each new signature. This signature scheme is stateful since the signer has to
distinguish used from unused OTS key pairs.

Using stateful signature schemes introduces some challenges, compared to state-
less signature schemes: The state of a stateful signature scheme has to be han-
dled with care. If it is ever not properly updated after creating a signature, or
if it is restored from a backup, previously used key material might be re-used,
potentially breaking the scheme. Furthermore, a single key pair of a stateful
signature scheme cannot be used on multiple CPUs or threads without synchro-
nizing the state between them, which might harm performance. These factors
do not need to be considered when using stateless signature schemes.

However, in some cases the stateful nature of these signature schemes also allows
specific optimizations: The BDS tree traversal algorithm (based on [13]) is
used in many implementations of stateful hash-based signature schemes [12, 32],
and speeds up signature creation by caching the results of some intermediate
computations.

In [25], Goldreich proposes a stateless (“memoryless”) variation of the stateful
Goldwasser-Micali-Rivest signature scheme [27]. In the GMR scheme, a large
set of OTS key pairs is associated with each key pair. The GMR scheme is
stateful since a new signature would depend on the number of messages that
were previously signed with the key pair.

When signing a message with Goldreich’s scheme, however, the digest of that
message determines which of those OTS key pair is used in the signature. The
security of this scheme is limited by the collision resistance of the hash function
that is used to choose the OTS key pair. As collision resistance underlies the
birthday paradox, using a hash function with n bits of output will deliver at
most 2n/2 bits of security. This limitation leads to impractical signature sizes
[9, p. 4]. SPHINCS [9] significantly improves Goldreich’s design with greatly
reduced signature size and signing speed, while keeping the stateless nature of
the original scheme.

In both SPHINCS and Goldreich’s scheme, signing speed could be improved if
there was a way to store the results of reoccurring intermediate computations.
That, however, is not possible without introducing some sort of state, which
would re-introduce all the difficulties related to using stateful signature schemes.

A hybrid model, in which the results of some computations are stored in a
short-term state, could benefit from both, the ease-of-use of a stateless signa-
ture scheme, as well as the improved signing speed from the ability to cache
the results of some reoccurring computations. This is the central idea that is
explored in this thesis.

1.3 Contributions and overview

This work explains and compares two ways in which a short-term state can
be added to SPHINCS to significantly speed up successive signatures. Both
approaches to short-term state have been implemented in C and are avail-
able for download. See https://github.com/25a0/sts-sphincs for code, in-

7

https://github.com/25a0/sts-sphincs

structions, and examples. This work also introduces a novel way to reduce
the size of HORST signatures without compromising security. For this, see
https://github.com/25a0/authentication-sets for code and instructions.

Chapter 2 explains SPHINCS, the stateless hash-based signature scheme intro-
duced in [9]. Chapter 3 introduces reduced signature sizes for HORST. Chap-
ter 4 explains two approaches to add short-term state to SPHINCS, and draws
a comparison between the two. Chapter 5 discusses practical results.

8

https://github.com/25a0/authentication-sets

Chapter 2

SPHINCS

This chapter explains a simplified version of the hash-based signature scheme
SPHINCS, the complete version of which is introduced in [9]. SPHINCS uses
two other hash-based signature schemes as building blocks: WOTS and HORST.
Section 2.1 explains hash trees, a structure that is widely used throughout
SPHINCS. Section 2.2 explains the one-time signature scheme WOTS, and Sec-
tion 2.3 explains a simplified version of the HORST few-times signature scheme.
Finally, Section 2.4 explains how all these building blocks can be combined to
form a simplified version of SPHINCS, simple-SPHINCS. The crucial differences
between the full version of SPHINCS proposed in [9], and the simplified version
are listed in Section 2.4.6.

Notation. Throughout this chapter, binary trees – trees where each parent
node has at most two child nodes – are used in multiple places. When addressing
the nodes in these trees, the following notation will be used. The single node
that has no parent node is called the root node of the tree. The nodes that have
no child nodes are called leaf nodes. The height h of a tree is the maximum
number of edges that form the shortest path from any leaf node to the root
node of the tree. A perfect binary tree is a binary tree where each node has
either two or no child node, and where the length of the shortest path from a
leaf node to the root of the tree is the same for all leaf nodes. A perfect binary
tree of height h has 2h+1 − 1 nodes, of which 2h are leaf nodes. Nodes can be
divided into layers. Layer 0 contains the leaf nodes of the tree, layer 1 contains
all parent nodes of those leaf nodes, and so on. Layer h contains the root node.
Note that a binary tree of height h has thus h+ 1 layers.

In a perfect binary tree, layer l, 0 ≤ l ≤ h contains 2h−l nodes. On each layer,
the nodes can be indexed from left to right, having node 0 at the very left, and
node 2h−l−1 at the very right end of the layer. Combining these two notations,
each node can be uniquely addressed as Nl,i, where l is the layer of the node,
and i is the index of the node within that layer.

If a node Nl,i has a parent node, then it can be addressed as Nl+1,bi/2c. If a
node Nl,i has child nodes, then they can be addressed as Nl−1,2i and Nl−1,2i+1.

9

2.1 Hash trees

Hash trees were first mentioned in a 1990 paper by Merkle [40]. They are
binary trees, in which each parent node is formed by computing the hash of the
concatenation of its two child nodes. Contrary to intuition, these trees are thus
grown from their leaf nodes to the root node.

Given 2h inputs i0, . . . , i2h−1 of size k, where h, k ∈ N, and a cryptographic hash
function F , the inputs i0, . . . , i2h−1 form the 2h leaf nodes of a binary hash tree
of height h. Starting with layer 1, the value of each node Nl,i can be computed
as F (Nl−1,2i||Nl−1,2i+1), where || denotes concatenation.

Because of the preimage resistance of the used cryptographic hash function, it
is infeasible to obtain the value of the child nodes, given the value of the parent
nodes.

2.1.1 Authentication paths

In the context of SPHINCS, a common task is to compute the root node of a
hash tree, given one of its leaf nodes. Of course this can be done by publishing
all other leaf nodes of that hash tree. However, if the sole goal is to compute
the root node, then it is sufficient to reveal a smaller set of nodes: A given leaf
node, together with its sibling node, can be used to compute the parent node
of these two leaves. With the sibling of this newly restored node, in turn, their
parent node can then be restored. With this pattern, all nodes can be restored
that are on the shortest path from the given leaf node to the root of the tree.
The set of sibling nodes that are required for this is called the authentication
path of the given leaf node.

Figure 2.1 shows the authentication path of a leaf node in a binary tree of
height 3.

To compute the authentication path of a leaf node n0,i, one can first enu-
merate the first h nodes along the shortest path from the leaf node to the
root of the tree: n0,i, n1,bi/2c, n2,bi/22c, . . . , nh−1,bi/2h−1c. Note that this ex-
cludes the root node itself. The siblings of all these nodes form the au-
thentication path of leaf n0,i. The sibling of a node nl,i is the node nl,i⊕1,
where ⊕ denotes binary XOR. The authentication path is thus the set
{n0,i⊕1, n1,bi/2c⊕1, n2,bi/22c⊕1, . . . , nh−1,bi/2h−1c⊕1}.

To summarize, the authentication path for any leaf node of a binary tree of
height h contains h nodes – one for each layer, except for layer h which contains
the root node. This means that the number of elements in the authentication
path grows linearly as the height of the hash tree grows, while the number of
nodes in the tree grows exponentially. Thus, while the root node can also be
restored from a given leaf node by revealing all other leaf nodes, it is more
efficient to only reveal the nodes along the authentication path of a leaf node.

While not relevant in the context of hash-based signatures, it is interesting to
note how using an authentication path shifts around the workload between the
party that reveals the node values and the party that wishes to recompute the

10

n3,0

n2,0

n1,0

n0,0 n0,1

n1,1

n0,2 n0,3

n2,1

n1,2

n0,4 n0,5

n1,3

n0,6 n0,7

Figure 2.1: The outlined nodes and edges show the path from node n0,1 to the
root of the tree. The light-gray nodes show the authentication path of node
n0,1.

root node from the given leaf node. First, note that it requires 2h− 1 hashes to
compute the root of a binary hash tree from its 2h leaf nodes, since a binary tree
of height h has 2h − 1 non-leaf nodes. The number of hashes that are required
to compute the elements of the authentication path, on the other hand, is not
as intuitive. Note that in Figure 2.1 there is one node on each layer l, 1 ≤ l ≤ h
of the tree that does not need to be computed in order to obtain all the nodes of
the authentication path of n0,1. Thus, while it takes 2h − 1 hashes to compute
all nodes of a binary hash tree, it only takes 2h − 1− h hashes to only compute
the authentication path of any given leaf node. It takes then another h hashes
to compute the root of the binary tree from a given leaf node and the h elements
of its authentication path. Since 2h − 1 − h + h = 2h − 1, the total number of
hashes that need to be computed stays the same, no matter if an authentication
path is used or all leaf nodes are revealed.

Even though using authentication paths does not reduce the total number of
hashes that need to be computed, it does make a difference for the workload of
the two involved parties. When revealing the 2h leaf nodes, there is no additional
work for the party that reveals the node values, but the verifying party needs to
compute 2h−1 hashes to restore the root node. With authentication paths, the
revealing party needs to produce the node values along the authentication path,
which requires the computation of 2h − 1 − h hashes to construct almost the
entire hash tree. The verifying party, however, then only needs to compute h
hashes to restore the root node from the leaf node and the authentication path.

Furthermore, using authentication paths reduces the amount of data that needs
to be communicated between the two parties. Instead of sending out the values
of the 2h leaf values, only h values need to be communicated.

Thus, the total number of hashes that need to be computed is the same in both
scenarios, but the workload is distributed differently, and the number of node
values that need to be communicated between two parties is vastly smaller when
using authentication paths rather than providing all leaf nodes.

11

2.1.2 L-trees

Perfect binary trees are simple, but only work in cases where the number of
leaves is a power of two. L-trees can be used in all other cases [17]. These
trees are similar to perfect binary trees, but nodes that do not have a sibling
are raised to the next layer. For example, seven leaf nodes could be fitted in a
binary tree of height 3 like the one shown in Figure 2.1, but Node n0,7 would be
missing. In that case, Node n0,6 would not have a sibling, and would be raised
to the next layer to replace Node n1,3. With this transition, each non-leaf node
still has exactly two child nodes.

To build an L-tree for k leaf nodes, start with a binary tree of height h =
dlog2(k)e, and place down the k leaf nodes n0,0, . . . , n0,k. Missing leaf nodes or
nodes that have no child nodes are omitted.

Initially, k/d2le nodes remain on layer l. To determine which of the remaining
nodes need to be raised, compute d = 2h − k. The binary representation of
d indicates which nodes need to be raised. A 1 at bit i indicates that the right-
most node on layer i has no sibling and needs to be raised. Here, bit 0 is the
least significant bit, and bit h is the most significant bit. If k is a power of two,
then this construction will produce a binary hash tree.

2.2 The WOTS signature scheme

This section will give a high-level overview of the Winternitz One-Time Signa-
ture scheme (WOTS) [31]. The section is divided into two parts. The first part
shows the basic building blocks of WOTS and how a naïve signature scheme
can be built from that.

The second part points out the flaw that breaks this naïve approach, explains
how it can be fixed using a checksum, and finally describes how key generation,
signing, and verification works in WOTS.

At its core, WOTS is built atop a cryptographic hash function F , which is one-
way, undetectable, and collision-resistant [20, p. 101]. Given a cryptographic
hash function F : {0, 1}k → {0, 1}k, which fulfills these requirements, and input
x, it is trivial to obtain F (x), given x, but it should be infeasible to obtain
x given F (x). Based on this, WOTS uses a chaining function C(x, i), where
C(x, 0) = x, and C(x, i) = F (C(x, i − 1)) where i > 0. It is trivial to obtain
C(x, i+ 1) given C(x, i), but it should be infeasible to obtain C(x, i− 1) given
C(x, i), i > 0.

From this, one could build a simple one-time signature scheme for inputs of size
n. Choose a secret key s ∈ {0, 1}k, and publish public key p = C(s, 2n). To
sign a message m ∈ {0, 1}n, publish c = C(s,m). One can verify this signature
by checking that C(c, 2n −m) = p.

In practice, this signature scheme would be unreasonably slow for reason-
able message sizes. A message size of 32 bits would require computing
up to 232 hashes. To fix this, the scheme can be adapted to use mul-
tiple hash chains. Using t chains instead of one, the signature scheme

12

would look like this: The signer chooses t secret-key components of k bits
each to form secret key s = (s0, . . . , st−1), and publishes public key p =
(C(s0, 2

n/t), . . . , C(st−1, 2
n/t)). To sign a message m, the signer splits the mes-

sage into t components m = (m0, . . . ,mt−1) of n/t bits each, and publishes
c = (C(s0,m0), . . . , C(st−1,mt−1)). This signature can then be verified by
checking that p = (C(c0, 2

n/t −m0), . . . , C(ct−1, 2
n/t −mt−1)). Note that the

number of hashes that need to be computed shrinks exponentially when t in-
creases, while the signature size only grows linearly.

However, both of these naïve schemes have a devastating flaw: Given a signature
of message m, an attacker can easily forge valid signatures for some messages
other than m. For the simple scheme, where only one chain is used, an attacker
can forge a signature for any message m′ > m. Given signature c = C(s,m),
the attacker computes c′ = C(c,m′ − m), which is a valid signature for m′.
Signatures for any message m′′ < m cannot be forged, since the attacker cannot
feasibly compute c′ = C(c,m′′ −m), since m′′ −m is negative for any m′′ < m.

For the more complex scheme, where t chains are used, an attacker can also
forge a signature for some messages. Let m′ � m denote that for all message
components m′i,mi, i ∈ [0, t − 1] it holds that m′i ≥ mi, and that there exists
some j ∈ [0, t − 1] such that m′j > mj . Given signature c = (c0, . . . , ct−1) of
message m = (m0, . . . ,mt−1), an attacker can then forge a signature for any
message m′ � m. For these messages, all m′i −mi are non-negative, allowing
the attacker to compute c′ = (C(c0,m

′
0−m0), . . . , C(ct−1,m

′
t−1−mt−1)), which

forms a valid signature of m′.

Signatures for any other messages cannot be forged with this attack; any message
m′′ which has at least one message component m′′i < mi would require the
attacker to compute C(ci,m′′i − mi), where m′′i − mi < 0, which they cannot
feasibly do.

To prevent the attack described above, a checksum is introduced. Given message
m, the checksum H is computed as H(m = (m0, . . . ,mt−1)) =

∑t−1
i=0 h(mi),

where h(mi) = (2n/t − 1 − mi). Note that for any mi, m′i it is the case that
m′i ≥ mi → h(m′i) ≤ h(mi), and that m′i > mi → h(m′i) < h(mi).

With this checksum, the signature scheme can be fixed by signing not
the message itself, but the concatenation of the message and its check-
sum. For this, the signer needs an additional secret key component sh,
of k bits. Signatures are then created as so: c = (c0, . . . , ct−1, ch) =
(C(s0,m0), . . . , C(st−1,mt−1), C(sh, H(m))).

An attacker is still able to forge valid signature components for the message
components of a message m′ � m given the signature of message m, but the
attacker will fail to also sign the checksum H(m′): Recall that m′ � m implies
two properties:

1. For all message components, it holds that m′i ≥ mi.

2. There is a message component j ∈ [0, t− 1] such that m′j > mj .

The first property implies that ∀i ∈ [0, t − 1], h(m′i) ≤ h(mi). Looking at the
sum of these values, we see that

∑t−1
i=0 h(m

′
i) ≤

∑t−1
i=0 h(mi), and thus H(m′) ≤

H(m).

13

With the second property, however, we know that ∃j ∈ [0, t−1] such that m′j >
mj , and thus h(m′j) < h(mj). But in that case,

∑t−1
i=0 h(m

′
i) <

∑t−1
i=0 h(mi),

and thus H(m′) < H(m) and H(m′)−H(m) < 0.

Since it is not feasible for the attacker to produce C(ch, H(m′) −H(m)), they
cannot forge a signature for any message m′ � m, given the signature of m.

The remainder of this section will describe how these building blocks are used
to form the one-time signature scheme WOTS.

Given a message length of n bits, choose a chain length w as a trade-off be-
tween signing speed and signature size. Reducing the chain length increases
the signature size linearly, but also increases the signing speed exponentially.
Typically, w is a power of two, so it can be written as w = 2b, b ∈ N. Further-
more, define l1 = dn/be, l2 = ddlog2(l1(w − 1))e/be, and l = l1 + l2. As before,
let F : {0, 1}k → {0, 1}k be a cryptographic hash function that is one-way,
collision-resistant, and undetectable. Let C(x, i) be a chaining function, where
C(x, 0) = x, and C(x, i) = F (C(x, i− 1)) for i > 0

2.2.1 WOTS Key generation

Use a PRNG, seeded with a seed S, to generate l · k bits of the secret key,
and split them into l secret key components of k bits each, to form secret key
s = (s0, . . . , sl−1). Using chaining function C, generate public key components
(C(s0, 2

b), . . . , C(sl−1, 2
b)). On top of these l key components, build a hash

tree of height dlog2(l)e. Since l is not necessarily a power of two, an L-tree,
as described in Section 2.1.2, is used for this. The root of this tree forms the
WOTS public key.

In practice, neither the secret key nor the public key are ever stored permanently.
Instead, they are regenerated from the seed S on demand.

2.2.2 WOTS Signing

Given message m of n bits, and secret key (S), split m into l1 message
components m0, . . . ,ml1−1 of b bits each. Then, compute checksum H(m =

(m0, . . . ,ml1−1)) =
∑l1−1
i=0 (2b − 1 − mi), and split H(m) into l2 compo-

nents h0, . . . , hl2−1 of b bits each. Concatenate those elements to form input
I = (m0, . . . ,ml1−1, h0, . . . , hl2−1). This input has l components of b bits each,
which will be addressed as Ii, 0 ≤ i < l.

For each input component Ii, compute ci = C(si, Ii) to form signature c =
(c0, . . . , cl−1).

2.2.3 WOTS Verification

To verify the signature c = (c0, . . . , cl−1) on messagem, given public key p, com-
pute checksum H(m), and split both the message and the checksum into a total
of l components of b bits each, forming input I = (m0, . . . ,ml1−1, h0, . . . , hl2−1).

14

Then, compute the public key components (C(c0, I0), . . . , C(cl−1, Il−1)) and
build an L-tree on top of these public key components. The signature is valid if
and only if the root of this L-tree equals the public key p.

2.3 The HORST signature scheme

This section will give a high-level overview of HORST, a few-times signature
scheme based on the HORS signature scheme introduced in [44]. The security
of a few-times signature scheme degrades the more messages are signed with a
key pair.

A HORST secret key consists of a number of secrets. The HORST public key is
a digest of the hashes of all those secrets. When signing a message, it is crucial
that the signer first creates a digest of the message, rather than signing the plain
message. Based on this digest, the signer then reveals a few of these secrets,
and provides a way for the verifier to check that these secrets were indeed part
of their public key.

A single key pair can be used for a few signatures, since only a fraction of all
secret key components are revealed with each signature. However, as more mes-
sages are signed, the fraction of revealed secret key components grows. Eventu-
ally, there will be a non-negligible chance that an attacker can sign the digest
of a new message using the revealed secret key elements of previous signatures.
This is why the security of a key pair degrades as more messages are signed.

HORST can be configured to balance signature size against signing speed and
re-usability. The parameter t = 2b, b ∈ N determines the number of secret-
and public-key components. The parameter k ∈ N determines in how many
pieces the signed message digest will be divided. Both parameters influence
the signature size, signing speed, and how often a key pair can be used to sign
messages. Increasing either t or k increases the signature size, decreases the
signing speed, but also increases the re-usability of each key pair.

This HORST key pair can then be used to sign a message digest of size k log2 t
bits. For practical choices for k and t, this usually results in a digest size of under
1kbit. If necessary, this restriction can be overcome by hashing an arbitrary-size
message using a cryptographic hash function with output length k log2 t bits or
more, and truncating this hash to k log2 t bits.

2.3.1 HORST Key generation

Let H : {0, 1}n → {0, 1}n be a cryptographic hash function that is (second)
preimage resistant and collision resistant1. Given a secret seed S, use a PRNG
to expand this seed to t secret-key components of n bits to obtain secret key
sk = (sk0, sk1, . . . , skt−1).

1With the changes that will be introduced in Section 2.5.2, this hash function will only
need to be (second) preimage resistant

15

The public key is generated in two steps. First, each secret key component ski
is hashed with H, giving pki = H(ski) for 0 ≤ i < t. Now, a binary tree of
height log2 t is built from the t hashes pk0, pk1, . . . , pkt−1. The root of this tree
forms the HORST public key pk.

2.3.2 HORST Signing

Given message M and some hash function F with an output length of k · b,
calculate m = F(M). Now, split m into k message components m1,m2, . . . ,mk,
each of size b. For each message component mi, reveal the corresponding secret-
key component skmi

. That is, reveal the secret-key component at the index that
is equal to message component mi. For example, if the message component has
the value 25, then the 25th secret-key component is revealed.

Finally, for each revealed secret-key component ski, reveal the authentication
path ai that is needed to reconstruct the tree root pk from H(ski). The entire
signature is then ((skm1 , am1), . . . , (skmk

, amk
)).

2.3.3 HORST Verification

To verify a given message M , given signature ((skm1 , am1), . . . , (skmk
, amk

)),
compute m = F(M), and split m into k message components m1,m2, . . . ,mk.
For each message component mi, compute pki = H(skmi

) for all message com-
ponents, and verify that public key pk can be restored from pki combined with
authentication path ai. The signature is valid if and only if this verification
succeeds for all message components.

2.3.4 The vagueness of “few”

As seen above, each HORST signature reveals parts of the secret key. With
each new signature, more parts of the secret key may be revealed. An attacker
can assemble these secret-key components to forge signatures of a few unseen
messages. For example, consider a HORST key pair where k = 2 and t = 2. If
the attacker is in possession of a signature of the message digest 0110, then the
attacker can also forge a signature of message digest 1001, since the secret key
component s10 and s01 were part of the genuine signature.

The more messages are signed with a particular key pair, the more elements
of the secret key are revealed, and it becomes increasingly likely that the k
elements of a new message digest are a subset of all the secret key components
that were already revealed in previous signatures.

As analyzed in [44, p. 6], HORS offers k(log2 t− log2 k− log2 r) bits of security,
where r is the number of signatures that have already been revealed. Using
a larger value for t decreases signing speed and increases signature size, but
improves the re-usability of a key pair. Increasing k reduces the re-usability of
a key pair, but increases the message size.

16

2.4 simple-SPHINCS

SPHINCS combines WOTS and HORST into a stateless signature scheme. This
section explains a simplified version of the original signature scheme presented
in [9]. Key differences to the original version are outlined in Section 2.4.6.

2.4.1 The SPHINCS hypertree

SPHINCS uses a large tree structure called a hypertree. The hypertree is a
hash tree that is divided into multiple layers of subtrees. Figure 2.2 shows an
example of such a hypertree. While the size of the hypertree in SPHINCS is
much larger than shown in Figure 2.2, the structure itself is otherwise identical.
The hypertree in Figure 2.2 has a total height h of 4, and contains d = 2 layers
of subtrees. Each subtree has a height of h/d = 2.

There exists a WOTS key pair for each leaf of every subtree, and the public
key of this key pair forms the leaf node, shown in Figure 2.2 as W . With the
exception of the lowest layer of the hypertree, each WOTS key pair is used to
sign the root of the subtree below.

In addition to that, there exists a HORST key pair for each leaf of the hypertree.
As shown in Figure 2.2, the public key of each HORST key pair, shown as H ,
is signed with the WOTS key pair that forms the corresponding leaf of the
hypertree.

Finally, the root of the hypertree forms the SPHINCS public key.

In practice, this hypertree is very large. SPHINCS-256, for example, uses a
hypertree with a total height of 60. Due to the enormous size of the hyper-
tree, it might be possible, but it is certainly not practical to ever calculate
the entire tree. For the same reason, the WOTS and HORST key pairs are
never permanently stored, but are instead generated deterministically from the
SPHINCS secret key, and their position in the hypertree. This makes it possible
to calculate any node of the hypertree with reasonable effort. For example, to
calculate the value of node n1,1 in subtree s1,0, it is sufficient to generate the
WOTS public keys that form the leaf nodes n0,2 and n0,3 in that subtree, and
hash them. In a traditional hash tree that is not divided into subtrees, all the
8 leaves in subtree s0,2 and s0,3 would be required to produce this value. This
demonstrates how a hypertree allows to compute any node in the tree from a
small number of nodes.

When a message is signed with SPHINCS, the signer first picks a leaf node of the
hypertree, and signs the message with the HORST key pair that corresponds to
that leaf node. On its own, the resulting HORST signature is worthless, since
there is no way for the verifier to check whether the used HORST key pair was
actually part of the signer’s hypertree. And since there are 260 HORST key
pairs in a SPHINCS hypertree, it is impractical to include all potential HORST
public keys in the SPHINCS public key. Instead, the signer provides a series
of WOTS signatures and authentication paths that allow the verifier to restore
the root of the hypertree from the signature. This way the verifier can compare
the restored root to the root that is stored in the signer’s public key.

17

W

W H

W H

W H

W H

W

W H

W H

W H

W H

W

W H

W H

W H

W H

W

W H

W H

W H

W H

s 1
,0

s 0
,0

s 0
,1

s 0
,2

s 0
,3

su
bt
re
e
la
ye
r
0

su
bt
re
e
la
ye
r
1

la
ye
r
0

la
ye
r
1

la
ye
r
2

la
ye
r
3

la
ye
r
4

F
ig
ur
e
2.
2:

SP
H
IN

C
S
hy

pe
rt
re
e
w
it
h
a
to
ta
lh

ei
gh

t
of

4
an

d
su
bt
re
es

of
he
ig
ht

2.
D
as
he
d
ou

tl
in
es

sh
ow

in
di
vi
du

al
su
bt
re
es
.

18

Figure 2.2 shows which elements of the hypertree the signer needs to reveal, so
that the verifier can restore the root of the hypertree. After producing a HORST
signature as described above, the signer signs the public key of the used HORST
key pair, using the WOTS key pair that corresponds to the chosen leaf node of
the hypertree. Then, the signer calculates all nodes along the authentication
path of that leaf, which are needed to restore the root of the lowest subtree.
The signer then signs that subtree root, using the WOTS key pair in the subtree
above, and again calculates all nodes along the authentication path that are
needed to restore the root of that subtree. The signer continues this process
layer by layer, until they reach the root of the hypertree. With these WOTS
signatures and authentication paths, the verifier can restore the root of the
hypertree, and thereby verify whether the used HORST key pair was indeed
part of the signer’s hypertree.

Note that the SPHINCS signature only contains the WOTS and HORST sig-
natures, but not the corresponding public keys. SPHINCS utilizes a property
shared by WOTS and HORST: When verifying a WOTS or HORST signature,
the verifier ends up with the public key of the used key pair if and only if the sig-
nature was valid, and otherwise ends up with a different value. Since the WOTS
public keys form the leave nodes of the subtrees, an invalid WOTS signature
will also change the nodes (and in particular the root) of the subtree.

Thus, if the HORST signature or any of the WOTS signatures are invalid, then
the verifier will arrive at a different HORST or WOTS public key. Different
public keys lead to different subtrees, and this change propagates through the
hypertree, all the way to its root node. Any invalid signature will thus lead to
a different root node. Since the expected root node is part of the SPHINCS
public key, the verifier can then simply check whether the restored root node
matches the expected root node. The SPHINCS signature is valid if and only
if they match.

The various elements of the hypertree can be addressed in the following way:

• The hypertree has a total height of h.

• There are 2h HORST key pairs at the bottom of the hypertree,
H0, . . . ,H2h−1.

• The hypertree consists of d layers of subtrees, with d mod h = 0. Each
subtree has height hs = h/d. The 0 th layer is at the very bottom of the
hypertree, containing 2h−hs subtrees. The subtrees of this layer have 2h

leaves in total.

• Each node within a subtree can be uniquely addressed by assigning indices
0 through 2hs − 1 to the leaves of the subtree, 2hs through 2hs +2hs−1− 1
to the nodes of the second layer of the subtree, and so on, so that the root
of the subtree has index 2hs+1 − 2.

• Each subtree in the hypertree can be uniquely addressed by the combina-
tion of its layer in the hypertree, and its index within that layer.

• By combining these addressing schemes, each node within the hypertree
can be uniquely addressed by a tuple (il, is, in), where in is the index of

19

the node within its subtree, is is the index of the subtree within its layer,
and il is the index of the layer that contains the subtree.

2.4.2 Key generation

A SPHINCS private key contains:

• A secret seed from which the the WOTS and HORST key pairs will be
generated, and

• a fixed message hash salt S, which is used to induce pseudo-randomness
when signing messages.

All these elements are chosen pseudo-randomly. The corresponding public key
contains the root of the hypertree.

The root of the hypertree is calculated by generating the WOTS key pairs at the
leaves of the topmost subtree, and building the hash tree on top of the public
keys of those key pairs.

2.4.3 Signing

To sign a message m with a secret key sk, the signer first chooses an index i of
a hypertree leaf deterministically from the message and the message hash salt.

The signer then hashes the message and the message hash salt. This hash is
signed using the HORST key pair Hi at index i, yielding HORST signature σH .
The public key of this key pair is then signed using the WOTS key pair at leaf
node (0, i/hs, i mod 2hs), yielding s0. The signer then computes the root r0
of subtree i/hs, as well as the authentication path a0, containing the hs nodes
that are necessary to restore r0 from the leaf node i mod 2hs .

As Figure 2.2 shows, each subtree layer has as many subtrees as the layer above
has leaf nodes, so that each subtree root can be mapped to a subtree leaf of
the layer above (with the exception of the subtree at the top of the hypertree).
The signer finds the WOTS key pair that corresponds to the root of subtree
i/hs on layer 0, and uses this key pair to sign r0, yielding WOTS signature σ1.
As before, the signer then computes the root r1 of this subtree, as well as the
authentication path a1 that is needed to restore r1 from the public key of the
used WOTS key pair.

The signer continues this for the remaining layers, signing the root of the last
subtree with the corresponding WOTS key pair, and computing the root and
authentication path of the new subtree, until they reach the root of the hyper-
tree.

Finally, they produce signature (S, i, σH , σ0, . . . σd−1, A), where

• S is the message hash salt,

• i is the index of the HORST key pair that was used to sign the message,

20

• σH is the HORST signature of the hash of the message and the message
hash salt,

• σ0 is the WOTS signature that signs the public key of the used HORST
key pair,

• σ1 . . . σd−1 are the d − 1 WOTS signatures that sign the roots of the
subtrees, and

• A is the set of h nodes that form the authentication paths a0 through
ad−1.

As explained above, the signature does not need to contain the WOTS and
HORST public keys of the used key pairs, as the verifier will compute the
public keys as part of the signature verification.

2.4.4 Verifying

Given messagem, public key (M, r), and signature (S, i, σH , σ0, . . . σd−1, A), the
verifier hashes m and S. The resulting hash, together with HORST signature
σH restores the public key pkH .

From the HORST public key pkH and the WOTS signature σ0, the verifier can
restore WOTS public key pk0. This, combined with the first hs nodes of the
authentication path A restores the root r0 of the subtree on layer 0. From here,
the verifier works their way up through the hypertree. Each time the root of
a subtree is restored, the verifier uses the next WOTS signature to restore the
WOTS public key of the key pair that was used to sign that root node. With
this new public key and the next hs authentication nodes, the verifier can then
restore the next subtree root, up until they restored the root of the hypertree.

Finally, the verifier checks whether the restored root of the hypertree matches
the root that is stored in the signer’s public key. The signature is valid if and
only if these nodes match.

2.4.5 simple-SPHINCS-256

This section will define simple-SPHINCS-256, a specific instantiation of the
parameters in the general SPHINCS construction described above. SPHINCS-
256 was defined in [9, p. 21f] as a trade-off between signature size and speed.
Simple-SPHINCS-256 uses the same parameters where applicable for this sim-
plified version. In simple-SPHINCS-256, the hypertree has a total height of
h = 60, with d = 12 subtree layers, implying a subtree height of hS = 5. The
security parameter n = 256 is chosen to provide 2128 security against attack-
ers with access to quantum computers, and also sets the output length of the
hashes used in WOTS and HORST to 256 bits. Furthermore, the output bit
length of the message hash that is signed using HORST is set to m = 512. Each
HORST key pair has t = 216 secret key elements, and k = 32 HORST secret
key elements are revealed with each signature. Finally, SPHINCS-256 sets the
chain length in WOTS signatures to w = 16, implying l = 67.

21

This configuration leads to a signature size of 41, 000 bytes, a public key size of
1056 bytes, and a secret key size of 1088 bytes.

The number of messages that can be safely signed with a single SPHINCS
key pair is finite, since the number of leaf nodes in the SPHINCS hypertree is
finite, and since HORST is a few-times signature scheme. However, with the
SPHINCS-256 configuration, 250 messages can be signed comfortably without
compromising the 2128 security [9, p. 20].

2.4.6 Differences to SPHINCS

Simple-SPHINCS, the signature scheme described above, is a simplified version
of SPHINCS, the signature scheme presented in [9]. Note that the version
presented here cannot be used as a simple drop-in replacement of the more
complex version, since some details are omitted in this simplified version which
are crucial to the security of the signature scheme.

A key difference is that SPHINCS heavily uses bit masks throughout the hy-
pertree, as well as in the HORST tree construction. By using these bit masks,
the underlying hash function only needs to be second-preimage resistant, rather
than collision resistant. This idea was first proposed in [17], based on work
in [5].

The details around the bit masks are omitted in simple-SPHINCS, since they
will be replaced by a different method in Section 2.5.2.

2.5 Multi-target attacks in SPHINCS

This section explains multi-target attacks, how they apply to SPHINCS, how
they can be mitigated, and which advantage this mitigation has on the key size
of SPHINCS. The attack vector itself was first described in [33], along with
a mitigation technique. The same technique can also be adapted to mitigate
multi-target attacks in SPHINCS.

Multi-target attacks come into play when the same hash function is used many
times in a cryptographic construction. A simple classical brute-force attack on
the (second-)preimage resistance of a hash function with output length n has
a success chance of roughly 1/2n, since that is the chance that the produced
output matches the favorable outcome. However, if the same hash function
is used d times, and if the attacker benefits from finding (second-)preimages
to any of those outcomes, then the success chance of a brute-force attack be-
comes d/2n [33, p. 8]. For a generic quantum attack based on Grover’s algo-
rithm, the success probability increases by

√
d [33, p. 8]. Depending on the value

of d, this can undermine not only formal security arguments, but also affects
the security of the scheme in practice.

22

2.5.1 Multi-target attack surfaces in SPHINCS

In SPHINCS, hashes are used in numerous scenarios, but not all of them are
affected by multi-target attacks in the same way. It follows an overview of the
various ways in which hashes are utilized throughout SPHINCS, along with an
explanation how the hash function used in each scenario is affected by multi-
target attacks.

To get a better intuition on the actual impact on SPHINCS in practice, the
configuration of SPHINCS-256 is used to produce specific numbers.

WOTS. There are
∑12
d=1 2

5d ≈ 260 WOTS key pairs associated with each
SPHINCS-256 key pair, the public keys of which are part of the hypertree. This
is a prime example for multi-target attacks. For all WOTS key pairs, the same
hash function is used to build a binary tree, the root of which forms the public
key of that key pair. An attacker can generate an arbitrary WOTS key pair,
and when the public key of this WOTS key pair matches any of the 260 public
keys in the hypertree, then the attacker can easily generate genuine signatures.

In practice, the attacker will need to consider that generating WOTS key pairs
is a non-negligible effort by itself; for SPHINCS-256, generating a WOTS key
pair involves computing roughly 210 hashes. The generated key pairs, however,
do not need to be specially crafted when attacking a specific SPHINCS key pair
– they can be re-used in future attacks.

The public key is not the only attack surface in each WOTS key pair. Each
WOTS signature uses 67 hash chains of length 16. Each hash chain, and each
individual hash is calculated using the same hash function. If an attacker were
to find a preimage for any one of the 67 · 16 chain elements in any WOTS
signature, then the attacker is able to produce a signature for a slightly altered
message than the one that was signed with that signature.

Recall, however, that the WOTS key pairs are used to sign tree roots and
HORST public keys. When an attacker finds a preimage in one of the WOTS
chain, they might be able to forge certain signatures, but that leaves the problem
of finding either, a HORST public key, or a suitable tree that can be signed with
the help of the found preimage.

HORST. There are 260 HORST key pairs associated with each SPHINCS-
256 key pair, the public keys of which are part of the hypertree. If an attacker
generates a HORST key pair with a public key that matches the public key
of any HORST key pair in the hypertree, then the attacker is able to forge
signatures of arbitrary messages.

Also for HORST there is a second attack surface. Each HORST key pair has
216 secret-key components. The hashes of these secret-key components form
the corresponding public key components. If an attacker was able to find a
preimage for any of those public-key components, they could use the found
secret-key component to forge a signature.

23

For this attack in particular it is important to understand when components
of the HORST key pair are revealed. With each signature, 32 secret-key com-
ponents are revealed as part of the signature itself, along with an additional
32 public key components which are revealed as part of the authentication paths.
If an attacker was able to find the preimage of any of those public key compo-
nents, it would allow them to forge a signature of a set of previously unsignable
messages. However, since the HORST signatures never sign plain-text messages
directly but a randomized digest, the attacker would still have to find a way
to produce a message with a digest that is now signable, thanks to the found
preimage.

Hypertree. 260−1 hashes of the form {0, 1}2n → {0, 1}n are used to construct
the hypertree. It might not be immediately clear why these hashes are affected
by multi-target attacks. After all, if an attacker managed to find a (second)
preimage of any of the nodes in the hypertree, then they would merely learn the
concatenation of the two child nodes.

Recall that the leaf nodes of subtrees contain WOTS public keys. An attacker
could generate two WOTS key pairs, treat their public keys as leaf nodes, and
produce their parent node. If the value of this parent node matches the value
of any node on layer 1 of a subtree, then the attacker can integrate their own
WOTS key pairs into this subtree, and in turn forge a signature. Each subtree
has 24 nodes on layer 1, so that there are 16 favorable outcomes for the attacker
in each subtree.

But the attacker is not limited to generating two WOTS key pairs to launch
a multi-target attack. They can generate any 2i, 1 ≤ i ≤ 5 key pairs, build a
binary tree on top of them, and check if the root node of this tree equals any of
the 25−i nodes on layer 5−i of that subtree. Furthermore, the attacker can even
re-shuffle the order of the WOTS key pairs, or re-use some of the WOTS key
pairs, leading to different binary trees, which have a new chance of matching any
of the favorable outcomes. Generating xWOTS key pairs allows the attacker to
arrange them in x(2

5) = x32 different ways at the leaves of a subtree of height 5.
Building the corresponding subtree is comparably cheap, and yields 25− 1 = 31
nodes that might match one of the favorable outcomes.

The attacks above can be executed on all subtrees within the hypertree. There
are

∑11
l=0 2

5l, or roughly 255 subtrees in the SPHINCS hypertree. For each
layer i within those subtrees any forged binary tree has thus 255 · 25−i potential
matches.

WOTS and HORST public keys Hash trees are also used in the construc-
tion of both, the WOTS and the HORST public keys. Similar to the previous
attack on binary hash trees in the hypertree, an attacker can construct an ar-
bitrary part of those hash trees, and compare the root node of that partial tree
to a number of favorable outcomes. Depending on which part of the tree is
attacked, there are up to 260+15 favorable outcomes for hashes in the HORST
public keys, and up to 260 · (25+1) favorable outcomes for hashes in the WOTS

24

public keys2.

However, both of these attacks have a small impact compared to the impact of
a successful attack on the binary tree that forms the hypertree. If successful,
an attacker could insert a WOTS or HORST key pair into the hypertree that is
partially different from one of the genuine key pairs. However, this still leaves
the problem of generating or finding a suitable key pair in the first place.

It should be noted that only a small fraction of those hash images are revealed
with each signature, so that the attack surface grows the more signatures are
created with any given key pair. In addition to that, these attacks can also be
carried out across different key pairs.

2.5.2 Mitigating multi-target attacks

One option to mitigate these attacks is to simply use hash functions with a larger
output size. However, the key size and more importantly the signature size in
SPHINCS and its underlying hash-based signature schemes scales linearly with
the output size of the used hash function. This was also pointed out in [33] for
XMSS and its variants, but applies to SPHINCS in the same way.

Another solution is to use a different hash function in each distinct scenario in
which the hash function family is used. In practice, this can be done by keying
the hash function with a specific value that uniquely identifies the scenario in
which this hash function is used. This method is described in [33, p.17], and
there it is proven that this mitigation technique makes it just as hard to find a
(second) preimage of a hash value as if the hash function was used only once in
the entire cryptographic construction.

In SPHINCS, this can be implemented with two changes. To make sure that
multi-target attacks cannot be launched across different key pairs, a random
public seed is added to every key pair.

In addition to that, each hash function call is uniquely identified with an ad-
dressing scheme. In [33], this addressing scheme is constructed recursively by
first identifying the structure that is being addressed, followed by an index that
identifies the specific hash function call within that structure. This can be
adapted for SPHINCS. Addresses can be grouped into four categories.

• A HORST address addresses all hash function calls that are involved in
key generation, signing, and verification with HORST. The hash function
calls can be indexed as follows. The first 2b indices address the hash calls
that generate public key components from secret key components. The
following 2b−1 indices are used for the hash calls that construct the binary
tree of height b on top of the public key components.

• A WOTS address covers the hash function calls in the WOTS chaining
function. Each call can be identified by first addressing in which of the

2The L-tree used to construct WOTS public keys has height 7, but nearly half of the nodes
are omitted, which reduces the attack surface.

25

chains the call is made, and which chain link is being calculated.

• A WOTS_L address covers the hash calls that construct the L-tree on top of
the WOTS public key components. For this, the nodes are simply indexed
one by one, starting with 0 at the left-most node on layer 0.

• Finally, a SPHINCS address uniquely identifies a node within the SPHINCS
hypertree through the combination of the subtree layer, the index of the
subtree within that layer, and finally the index of the node within that
subtree.

This address type is used to address the hash function calls that construct
the hypertree. In addition to that, all other address types are always
coupled with a SPHINCS address.

In SPHINCS, each hash function call was masked with bit masks that were
determined during key generation. With the addressing scheme described above
we no longer need pre-generated bit masks. Each hash function call is then
keyed with the public seed, and masked with a bit mask derived ad-hoc from
the address that uniquely identifies the hash function call.

In SPHINCS, the bit masks were determined during key generation, and con-
tributed to the size of the public key. Replacing the bit masks reduces the
public key size significantly. For instance, SPHINCS-256 has a public key of
1056 bytes. By replacing the bit masks with a single public seed of 32 bytes,
the public key shrinks down to a total of 64 bytes.

26

Chapter 3

Reducing HORST signature
size

This chapter introduces a new method to reduce the size of HORST signatures.
Section 3.1 first explains an optimization already present in SPHINCS that
greatly reduces the size of the HORST signatures used in SPHINCS. Section 3.2
then presents a new method that can reduce the size of HORST signatures even
further, proves that this method is always beneficial over HORST signatures
with no optimizations, and discusses its efficiency in worst-case and best-case
scenarios. Section 3.3 discusses implementation details, and Section 3.4 con-
cludes with statistical measurements of the efficiency of the new approach in
practice.

3.1 HORST signature size in SPHINCS

In SPHINCS-256, each HORST signature consists of 32 leaves of a binary tree
of height 16. To reconstruct the root of this tree from any one of these leaves,
an authentication path of 16 nodes is required. Simply storing all of these
authentication paths separately leads to a total of 32 · 16 = 512 nodes.

SPHINCS stores the authentication paths for the 32 leaves in a more efficient
way. Since all leaves are part of the same tree, the authentication paths for
the leaves must necessarily share many nodes – especially on higher layers of
the tree. To not waste space with these duplicates, SPHINCS stores layer 10 of
the binary tree in its entirety inside the signature. This means that nodes on
layers 10 through 15 can be removed from the authentication paths. Across the
authentication paths for all the 32 different leaf nodes, this reduces the number
of nodes by 32 · 6 = 192 nodes in total. Layer 10 itself contains 64 nodes.
Thus, overall this optimization reduces the signature size from 512 hashes to
32 · 10 + 64 = 384 hashes.

27

3.2 HORST Authentication sets

This section presents a novel approach to verify multiple leaves of a binary tree,
in which the authentication paths of all leaves are combined into an authentica-
tion set, instead of storing them separately. This approach reduces the HORST
signature to 352 hashes in the worst-case scenario, and to 11 hashes in the (ad-
mittedly unlikely) best-case scenario. Authentication sets are not only small,
they can also be calculated efficiently, and with a small memory footprint.

Given a set of leaf nodes L, the authentication set AL is the minimal set of
nodes that is required to recompute the root of a binary hash tree from the leaf
nodes in L. Section 3.2.1 shows that authentication sets are always smaller than
the combination of separate authentication paths. Section 3.2.2 then produces a
general formula to calculate the size of an authentication set, and Section 3.2.3
analyses best-case and worst-case scenarios. Section 3.3 covers ways to imple-
ment authentication sets, and Section 3.4 discusses practical aspects of using
authentication sets in SPHINCS, including their efficiency on average.

When referring to nodes in binary trees, the same notation will be used that
was introduced at the beginning of Chapter 2.

3.2.1 Combining authentication paths

In SPHINCS, the HORST signature contains the nodes of the authentication
path of each leaf separately. An authentication set benefits from the fact that
separate authentication paths might contain duplicate nodes, and that the au-
thentication path of one leaf might allow one to generate a node on the authen-
tication path of a different leaf.

In general, if more than one leaf of the binary tree is given, an authentication
set will always be strictly smaller than the combination of separate authentica-
tion paths. If a single leaf is given, the authentication set is the same as the
authentication path. We can prove that for any set of given leaves L, |L| ≥ 1
of a tree of height h, there is a corresponding authentication set AL such that
|AL| ≤ (h− 1)(|L| − 1) + h.

This can be proven by induction on the size of L. In the base case, only a single
leaf is given, so that |L| = 1. If only a single leaf is given, then the authentication
set equals the normal authentication path of that leaf node, which contains h
nodes, so that |AL| = h. So, for |L| = 1 we have

|AL| ≤ (h− 1)(|L| − 1) + h

|AL| ≤ (h− 1)(1− 1) + h

|AL| ≤ h,

which holds since |AL| = h.

For the inductive case, recall that in a binary tree of height h with h > 0, layer
h − 1 always contains exactly two nodes, nh−1,0 and nh−1,1. Consequentially,
all leaves are either a child of nh−1,0 or nh−1,1.

28

Assume that there is a set L with a corresponding authentication set AL for
which it holds that |AL| ≤ (h−1)(|L|−1)+h. Given a leaf l, l /∈ L, we want to
find the maximum size of authentication set AL∪{l} that authenticates all nodes
in L ∪ {l}.

Assume that l is a child of nh−1,0. Then there are two possible cases:

1. There are no other leaf nodes in L that are children of nh−1,0.

If we were to construct the full authentication path of all leaves indepen-
dently, then nh−1,1 would be part of the authentication path of l, while
nh−1,0 would be part of the authentication paths of all nodes in L.

We can reconstruct nh−1,0 from the first h−1 nodes of the authentication
path of l. We can also reconstruct nh−1,1 from the nodes in AL, since
nh−1,1 lies on the paths of all nodes in L. We therefore do not need either
node of layer h− 1 to authenticate L ∪ {l}.

Thus, adding l makes one node in AL redundant, and only h − 1 new
nodes are necessary to authenticate l itself. Therefore, |AL|−1+(h−1) =
|AL∪{l}| ≤ |AL|+ (h− 1).

2. There are other leaf nodes in L that are children of nh−1,0. In this case,
node nh−1,1 is on the authentication path of other nodes in L. Since AL
contains all nodes required to authenticate all leaf nodes in L, we know
that either nh−1,1 is part of AL, or nh−1,1 can be reconstructed from other
nodes of AL and L.

Either way, node nh−1,1 does not need to be included in AL∪{l}, so that
at most h− 1 nodes are required to authenticate l, and |AL∪{l}| ≤ |AL|+
(h− 1).

In practice, the size of the authentication set can then be reduced further
by applying these rules recursively on the tree underneath node nh−1,0
until h = 0.

If l was a child of nh−1,1 instead, then a similar proof can be made by swapping
nh−1,0 and nh−1,1.

Thus, adding any new leaf l adds at most h− 1 nodes to the authentication set
AL, so that for the new set L ∪ {l} of size |L|+ 1 there is a new authentication
set AL∪{l} of maximum size |AL|+ (h− 1) so that

|AL∪{l}| ≤ |AL|+ (h− 1)

≤ (h− 1)(|L| − 1) + h+ (h− 1)

≤ (h− 1)((|L|+ 1)− 1) + h.

≤ (h− 1)(|L ∪ {l}| − 1) + h.

Note that this proof does not capture the full benefit of using authentication
sets; it is simply meant to prove that authentication sets are never larger than
the combined size of authentication path, and that they are even smaller than
the combined size of authentication paths if the number of leaves is larger than 1.

29

Leaf Authentication path
n0,1 (n0,0, n1,1, n2,1)
n0,2 (n0,3, n1,0, n2,1)
n0,3 (n0,2, n1,0, n2,1)
n0,4 (n0,5, n1,3, n2,0)

Table 3.1: Examples for authentication paths of leaves of the binary tree in
Figure 3.1.

3.2.2 Authentication-set size

This section analyzes which characteristics of the given leaves influence the size
of the minimal authentication set, and presents a function that determines the
size of the minimal authentication set from a set of given leaves.

As described above, the authentication set is smaller than the sum of separate
authentication paths since duplicate and redundant nodes are removed. Thus,
the more nodes the various authentication paths share, the smaller the authen-
tication set is. Unfortunately it is not straight-forward to determine the exact
number of duplicate and redundant nodes.

Table 3.1 shows the authentication paths of different leaves of the binary tree
in Figure 3.1. Even though all four leaves are right next to one another, the
number of shared nodes in their authentication paths is different for each pair of
leaves. For example, leaves n0,2 and n0,3 share two nodes of their authentication
paths, while the authentication paths of leaves n0,3 and n0,4 do not have a single
node in common. Thus, the number of shared nodes (and therefore also the size
of the authentication set) depends not only on the number of given leaves, but
also on their relative position to one another.

How many nodes the authentication paths of two leaves share depends on the
layer on which the paths between the root and leaves diverge. Let nl,i be
the node below which the paths of the two leaves diverge. Below layer l, the
authentication paths of the two leaves are different. But on and above layer l
the authentication paths are identical. The examples in Table 3.1 show this,
too. The paths of n0,1 and n0,2 diverge on layer 2, and the nodes on layer 0 and
1 on their authentication paths are indeed different, while the node on layer 2
is the same for both leaves, which confirms the pattern described above. The
paths of n0,2 and n0,3 diverge on layer 1, and indeed, from layer 1 upwards the
authentication paths of these leaves are identical.

To compute the layer on which the paths of two leaves diverge, or the distance
to divergence, we can look at the binary representation of their indices.

The paths of leaves n0,2 and n0,3 diverge on layer 1. Looking at the binary
representation of their indices (102 and 112, respectively), we can note that
they only differ at the least significant bit.

The path of leaves n0,3 and n0,4 diverge on layer 3. Accordingly, the binary
representation of their indices (0112 and 1002) differ up to the third bit, counting
from the least significant bit.

In general, the layer on which the paths of two leaf nodes n0,i and n0,j diverge

30

n3,0

n2,0

n1,0

n0,0 n0,1

n1,1

n0,2 n0,3

n2,1

n1,2

n0,4 n0,5

n1,3

n0,6 n0,7

Figure 3.1: Binary tree of height 3.

is equal to the position of the left-most bit at which the binary representations
of i and j differ. The following function d(i, j) returns that position.

d(i, j) =

{
0 if i = j

1 + d(bi/2c, bj/2c) otherwise

We can also explain this function with the geometry of binary trees. Recall that
the parent node of nl,i is nl+1,bi/2c. The distance to divergence between two
nodes n0,i and n0,j is 0 if i = j. Otherwise, it is one bigger than the distance
to divergence of their parent nodes.

There are 2 · d(i, j) non-shared nodes on the authentication paths of two leaves
n0,i, n0,j , but two of these nodes do not need to be added to the authentication
set, namely the ones on layer d(i, j)− 1. If the paths of the two leaves diverge
in a node nd(i,j),v on layer d(i, j), then one of its child node is on the path from
n0,i to the root node, and on the authentication path of n0,j , and vice versa for
the other child node. Because of that, both of those nodes can be constructed
from the first d(i, j)−1 nodes of the authentication paths of the two leaves, and
therefore neither of those nodes need to be included in the authentication set.

For example, leaves n0,1 and n0,2 have in total 2 · d(1, 2) = 4 non-shared nodes
in their authentication paths, as shown in Table 3.1. But node n1,1 can be
constructed from n0,0 and the given leaf n0,1, while node n1,0 can be constructed
from n0,3 and the given leaf n0,2, which means that neither of the leaves on layer
d(1, 2)− 1 = 1 need to be included in the authentication set.

With this metric we can compute the size of the authentication set for two given
leaves n0,i, n0,j in a tree of height h:

s((n0,i, n0,j), h) = (d(i, j)− 1) · 2 + (h− d(i, j))
= h+ d(i, j)− 2.

This is simply the number of non-shared nodes in the authentication paths per
leaf, minus the two redundant nodes, plus the number of shared nodes in the
upper layers of the tree.

31

If more than two leaves are given, the overlap in the authentication paths will
differ for each pair of leaves. However, this does not mean that the overlap needs
to be calculated for each pair of given leaves. Instead, by iterating through the
given leaves from left to right, the leaves can be enumerated in such a way that
for each leaf li it holds that no lj , j > i is closer to li than li+1. Here, closer
refers to the distance as determined by d.

Given three unique leaves li, lj , lk, sorted from left to right, the total size of the
authentication set can then be computed like so:

s((n0,i, n0,j , n0,k), h) = d(i, j) + d(j, k) + h− 2 · (3− 1).

This can be disassembled into three parts:

1. For each given leaf and its closest given neighbor leaf to the right, add the
d(j, k) nodes that are required to restore a subtree up to the layer where
the paths of these two leaves diverge.

2. For the last leaf add the size of its entire authentication path.

3. For each leaf but the last leaf, subtract the two nodes that have become
redundant as described above.

This equation can be generalized to compute the size of the authentication set
for an arbitrary number n of given leaves:

s(L = (n0,l1 , n0,l2 , . . . , n0,ln), h) = h− 2 · (n− 1) +

n−1∑
i=1

d(li, li+1) (3.1)

Here, L is the tuple containing the given leaves, sorted by their index, and with
duplicate leaves removed, and h is the height of the binary tree.

3.2.3 Best-case and worst-case scenarios

This section analyses these best-case and worst-case scenarios for authentication
sets, and produces two formulas that can calculate the size of the authentica-
tion set in the best and worst case, given the tree height and the number of
given leaf nodes. Average cases are not discussed theoretically, but Section 3.4
presents experimental results for the average size of HORST authentication sets
in SPHINCS.

With Equation 3.1 alone, it is difficult to reason about the efficiency of authen-
tication sets in general, since the exact size of the authentication set depends
on the individual indices of the given leaves. It is, however, possible to find
formulas for the authentication-set size in the best and worst case: For a fixed
number of unique given leaves, the size of the authentication set only depends
on the geodesic distance between neighbor leaves. In graph theory, the geodesic
distance is the number of edges in the shortest path from one node to the other.
Note that the geodesic distance of two leaf nodes n0,i, n0,j is 2d(n0,i, n0,j). Mini-
mizing or maximizing the geodesic distance between all leaves will also minimize
or maximize the size of the minimal authentication set, respectively.

32

The sum of the geodesic distances between n unique leaves is minimal if all
leaf nodes are children or descendants of dn/2ke node(s) on layer k, for all
k ∈ [1, dlog2(n)e]. In this case, the given leaf nodes are distributed across the
tree as little as possible, leading to maximal overlap between their authentication
paths, which minimizes the size of the authentication set.

For example, consider the binary tree in Figure 3.1. The following leaf nodes are
given: n0,0, n0,2, n0,3, n0,6, n0,7. On layer dlog2(5)e = 3, all these leaf nodes are
descendants of a single node n3,0. On layer 2, all the leaf nodes are descendants
of the d5/22e = 2 nodes n2,0 and n2,1. Finally, on layer 1, all the leaf nodes are
children of the d5/21e = 3 nodes n1,0, n1,1, and n1,3. The authentication set for
these leaf nodes consists of only two nodes: n0,1 and n1,2.

To give another example, consider that the following leaf nodes are given:
n0,0, n0,2, n0,3, n0,5, n0,6. As before, these leaf nodes are descendants of one node
on layer 3, and two nodes on layer 2. On layer 1, however, the leaf nodes are
children of four different nodes (n1,0, n1,1, n1,2, n1,3), while d5/21e = 3. Thus,
this set of leaf nodes does not fall into the best-case scenario. Indeed, the
authentication set for these leaf nodes has three elements (n0,1, n0,4, n0,7).

When a set of leaf nodes falls into the best-case scenario, it is possible to com-
pute

∑n−1
i=1 d(li, li+1) without knowing the exact indices of the given leaf nodes.

Starting at layer 0, we know that amongst the n leaf nodes are bn/2c pairs of
sibling nodes, which share the same parent node on layer 1. Naturally, there can-
not be more than bn/2c pairs of sibling nodes in a binary tree. But there cannot
be less than bn/2c pairs of sibling nodes, either: We know that, in the best-case
scenario, all leaf nodes are distributed across dn/21e nodes on layer 1. If n is
even, then the n = 2k, k ∈ N leaf nodes are distributed across d2k/2e = k nodes
on layer 1, which necessarily leads to n/2 = k pairs of sibling nodes. If n is odd,
then the n = 2k+1, k ∈ N leaf nodes are distributed across d(2k+1)/2e = k+1
nodes on layer 1. But those k + 1 nodes have precisely 2k + 2 child nodes. No
matter how the 2k + 1 revealed leaf nodes are distributed amongst those k + 1
parent nodes, at least k = b(2k + 1)/2c pairs of siblings will be amongst them.

When there are bn/2c pairs of sibling nodes amongst the given leaf nodes, then
for each pair li, li+1, we know that d(li, li+1) = 1, since their paths to the root
of the tree diverge on layer 1.

Moving on to layer 1, we know that there are c1 = dn/21e nodes on layer 1 which
are parents to the revealed leaf nodes, and, as before, there are bc1/2c pairs of
sibling nodes amongst them. In each pair we can identify a left node n1,l and a
right node n1,r. Amongst the children of n1,l there is one leaf node, n0,i, which
is the furthest to the right between all revealed leaf nodes that are descendants
of n1,l. Similarly, n1,r is the parent node of some leaf node n0,j , which is the
furthest to the left between all revealed leaf nodes that are descendants of n1,r.
Then, n0,j is a direct successor of n0,i, when ordering all revealed leaf nodes from
left to right. Furthermore, we know that the paths of n0,i and n0,j diverge at
layer 2, or more precisely, in the parent node of nodes n1,l and n1,r. Therefore,
d(n0,i, n0,j) = 2.

33

This pattern is generalized for all layers in this formula:

n−1∑
i=1

d(li, li+1) =

h−1∑
l=0

⌊
dn/2le

2

⌋
· (l + 1).

Table 3.2 lists
∑n−1
i=1 d(li, li+1) for various numbers of leaves, computed with this

method. Looking up this sequence of integers in the On-Line Encyclopedia of
Integer Sequences1 yields a connection between the exact sequence (A0051872)
and the Hamming weight (A0001203), or the number of ones in the binary
representation of a number. The link between those two sequences was pointed
out by OEIS user Paul Barry. This leads to the following compact formula for
the best case scenario:

n−1∑
i=1

d(li, li+1) = 2(n− 1)−H(n− 1),

where H(n) is the Hamming weight of n. Table 3.2 shows
∑n−1
i=1 d(li, li+1) for

various numbers of leaves, along with H(n− 1) and 2(n− 1)−H(n− 1).

of given leaves 1 2 3 4 5 6 7 8 9 10 11 12∑n−1
i=1 (d(li, li+1)) 0 1 3 4 7 8 10 11 15 16 18 19

2(n− 1) 0 2 4 6 8 10 12 14 16 18 20 22
H(n− 1) 0 1 1 2 1 2 2 3 1 2 2 3

2(n− 1)−H(n− 1) 0 1 3 4 7 8 10 11 15 16 18 19

Table 3.2: Examples to illustrate the connection between the geodesic distances
and the Hamming weight.

Then, the best-case overall size of the authentication set is

sB(n, h) = h− 2(n− 1) + 2(n− 1)−H(n− 1)

= h−H(n− 1).

In the worst-case scenario, on the other hand, all nodes are spaced out as far
as possible across the tree structure, which maximizes the geodesic distance
between them. Let L be the set of given leaf nodes, and let n = |L| be the
number of given leaf nodes. Let hl = dlog2(n)e be the minimum height of a
binary tree big enough to hold n leaf nodes.

In the worst-case scenario, the paths from all n given leaf nodes to the root pass
through n different nodes on layer l = h−hl, while forming only n−2hl−1 pairs
of siblings.

First, observe that, if the paths of all leaf nodes pass through different nodes
on layer l, then there is no overlap between their authentication paths on the
lowest l layers. Therefore, the authentication set will need to contain n · l nodes
that are necessary to restore the nodes on layer l.

1https://oeis.org
2https://oeis.org/A005187
3https://oeis.org/A000123

34

https://oeis.org
https://oeis.org/A005187
https://oeis.org/A000123

Next, we will turn our attention to the pairs of siblings on layer l. If two nodes
nl,i, nl,j are siblings, then the paths to the root of the tree meet in their common
parent node. Otherwise, their paths to the root of the tree will meet further up
in the tree, causing less overlap in the authentication paths of the two nodes.
Let NL be the set of nodes on layer l that are on any of the paths from the leaf
nodes in L to the root of the tree. The fewer pairs of sibling nodes there are in
NL, the less overlap is there in the authentication paths of the given leaf nodes,
and the bigger is the size of the authentication set.

There have to be at least n − 2hl−1 pairs of siblings amongst NL on layer l.
Since layer l + 1 has 2hl−1 nodes, there are also 2hl−1 pairs of sibling nodes on
layer l in total. From our definition of hl, we know that n > 2hl−1. It is possible
to arrange the first 2hl−1 elements of NL such that none of them are siblings of
each other. However, the remaining n − 2hl−1 elements of NL will necessarily
be nodes that are siblings of nodes which are also in NL. Those form n− 2hl−1

pairs of sibling nodes, neither of which need to be included in the authentication
set.

That leaves the remaining 2hl−n nodes in NL which do not have a sibling node
that is also in NL. The siblings of those nodes do have to be included in the
authentication set.

At this point, all nodes on layer l + 1 can then be restored. Therefore, none of
the nodes on layers l + 1 and above need to be included in the authentication
set.

This leaves us with the following formula for the worst-case scenario:

sW (n, h) = n · l + 2hl − n, hl = dlog2(n)e, l = h− hl.

For SPHINCS-256, in the best-case scenario all 32 given leaves are children of the
same node on layer 5. In that case, this node and its subtree can be completely
restored just from the given leaves, since a binary tree of height 5 has exactly
32 leaves. Thus, only the authentication path on layer 5 through 15 is required
to restore the root of the tree. Since all leaves have the same authentication
path from layer 5 upwards, the entire authentication set only consists of the
11 nodes on layer 5 through 15. Verifying this with the equation above yields
indeed

sB((l1, l2, . . . , l32), 16) = 16−H(32− 1) = 16− 5 = 11.

The worst-case scenario in SPHINCS would be that the 32 given leaves are
spread across the 32 nodes on layer 11. Up to layer 11, none of the authentication
paths of the given leaves overlap. This accounts for 11 · 32 = 352 nodes in the
authentication set. No additional nodes are required from layer 11 upwards
however, since all nodes on layer 11 can be restored from those 352 nodes.
Using hl = dlog2(32)e = 5 and l = 16 − 5 = 11, we can verify this with the
equation above:

sW ((l1, l2, . . . , l32), 16) = 32 · 11 + 25 − 32 = 352.

35

3.3 Implementing HORST with authentication
sets

This section will explain how HORST signature creation and verification with
authentication sets can be implemented efficiently. The initial focus will be on
the computation of the authentication set itself. After that we explore how
the authentication sets can be used in the HORST signing and verification
algorithms.

Section 3.3.1 will walk through a naïve Python implementation to compute the
authentication set. Section 3.3.2 will then introduce a more efficient implemen-
tation, both in terms of execution time and memory requirement.

3.3.1 Naïve implementation

The function path(index, height) returns the path from the leaf at in-
dex index to the root of a binary hash tree of height height. Note that
the returned path of a given leaf does include the leaf itself. The function
auth_path(index, height) returns the authentication path for the leaf at in-
dex index in a binary hash tree of height height.

Nodes are uniquely identified with a tuple that contains their layer and their
index (both in line with the definitions introduced at the beginning of Chap-
ter 2). With this indexing method, the index of the left child node is always
even, and the index of a right child node is always odd. Since the nodes are
indexed continuously from left to right, starting with 0, the sibling of a node at
index i is always at index i⊕ 1, where ⊕ denotes binary XOR.

1 def path(index , height):
2 layer = 0
3 path = []
4 while layer < height:
5 path.append ((layer , index))
6 layer += 1
7 index >>= 1
8 return path
9

10 def auth_path(index , height):
11 layer = 0
12 authpath = []
13 while layer < height:
14 authpath.append ((layer , index ^ 1))
15 layer += 1
16 index >>= 1
17 return authpath

The function auth_set_addresses computes the addresses of the nodes in the
authentication set of a set of leaves in a binary hash tree of height height.
First, for each given leaf the authentication path of this leaf is computed, as well
as the path from that leaf to the root of the binary hash tree. These authenti-
cation paths and paths are accumulated in two lists. Next, the Python built-in
function set transforms the accumulated authentication paths and accumulated

36

paths into unordered collections of unique nodes. The difference of these two
sets form the minimal authentication set for the given leaves.

18 def auth_set_addresses(leaves , height):
19 accum_path = []
20 accum_auth = []
21 for leaf in leaves:
22 accum_path += path(leaf , height)
23 accum_auth += auth_path(leaf , height)
24 return set(accum_auth) - set(accum_path)

It is easy to show that all remaining nodes are strictly necessary to restore the
binary tree’s root from the set of given leaves. Suppose that the produced set
was not minimal. In that case, there has to be at least one superfluous node
that could be removed for one of the following reasons:

1. The node is not on the authentication path of any of the given leaves.
This is not possible since the authentication set only ever contains nodes
that are on the authentication path of at least one of the given leaves.

2. The node is not unique. This is not possible since duplicates have been
removed by the set function.

3. The value of the node can be computed from other given leaves. This is
not possible either, since hash trees can inherently only be computed from
the bottom up. Thus, a value of any node can only be computed if it is
on the path of a given leaf to the tree’s root. Since all such nodes have
been removed, none of the remaining nodes can be computed from other
leaves.

Thus, removing any one of the remaining nodes from the authentication set is
guaranteed to remove a node from the authentication path of at least one of
the given leaves which cannot be computed from any of the other given leaves,
making it impossible to restore the root of the binary tree.

Therefore this function does indeed produce the minimal authentication set for
the given leaves.

3.3.2 Efficient implementation

The naïve implementation is easy to read, and should help to get an idea of
how to compute authentication sets, but it is not particularly efficient. It com-
putes the path and authentication path of all leaves and holds them in memory
temporarily, and it compares all nodes of the authentication paths of all given
leaves to all the nodes of the paths of all given leaves.

Below is a more efficient implementation in Python. This implementation, and
a C implementation of the same algorithm are available at https://github.
com/25A0/authentication-sets.

1 def auth_set_addresses(leaves , height):
2 stack = []
3 auth_set = []
4 sorted_unique_leaves = unique(sorted(leaves))
5
6 for i in range(0, len(sorted_unique_leaves)):

37

https://github.com/25A0/authentication-sets
https://github.com/25A0/authentication-sets

7 if i < len(sorted_unique_leaves) - 1:
8 d = half_dist(sorted_unique_leaves[i],
9 sorted_unique_leaves[i+1])

10 else:
11 d = height + 1
12
13 leaf_index = sorted_unique_leaves[i]
14 for h in range(0, d - 1):
15 if len(stack) > 0 and stack[-1] == h:
16 stack.pop()
17 else:
18 # Add that element to the authentication set
19 auth_set.append ((h,leaf_index ^ 1))
20 leaf_index >>= 1
21 # Add that height to the stack
22 stack.append(d-1)
23 return auth_set

The Python built-in function sorted(list) returns a new list containing all
elements of list sorted in ascending order, while the function unique(list)
returns a list of the unique elements of the given, sorted list. As long as list
is sorted, unique can be implemented very efficiently.

The remainder of the function computes the addresses of the nodes in the au-
thentication set, using the patterns explained in the previous sections.

The stack never exceeds size h−1, and the size of the authentication set can be
computed in advance using the equations given in previous sections. It might
seem faster to simply compute the size of the authentication set for the worst-
case scenario, since here the individual geodesic distances between the given
leaves do not need to be computed. However, these distances can simply be
cached in an array of size n, and then re-used when the actual authentication
set is computed.

3.3.3 Using authentication sets in HORST

The efficient implementation above helps to explain the initial claim that it is
easy to implement HORST signatures this way in a memory-efficient manner.
When creating a traditional HORST signature, there are three options how the
authentication paths can be constructed:

• The authentication path is constructed separately for each leaf. This is
very memory efficient since the tree can be computed by caching at most
h nodes at a time. However, this requires the entire tree to be computed
k times.

• The entire tree is cached. This is reasonable for tree sizes like the ones
used in SPHINCS, but can be difficult in situations with tight memory
restrictions. The obvious benefit is that the tree only needs to be computed
once.

• The authentication paths are all constructed during a single iteration
through the tree. This combines the best of the other two options: It
avoids iterating through the tree more than once, but does not require the
verifier to cache the entire tree. This option was used in [45, p. 15f] to

38

construct a HORST signature with very tight memory restrictions without
compromising speed.

When memory restrictions are not too tight, the fastest method to collect the
hashes of the authentication set is to build the entire tree in memory, and simply
pick out the nodes of the authentication set.

For tight memory restrictions this approach is not an option. Ideally the signer
would use the tree-hash algorithm to build the tree with a minimal memory
footprint, and copy the nodes of the authentication set as they are computed.
Unfortunately this is not trivial when the authentication set was computed with
the efficient algorithm given above. The order of nodes in the authentication
set is different from the order in which they are encountered in the tree-hash
algorithm. For example, the authentication set might start with nodes n0,2 and
n1,0, if leaf n0,3 is given. However, in the tree-hash algorithm the verifier will
calculate n1,0 before they come across n0,2. In general the verifier would need
to check for each encountered node whether it is part of the authentication set,
which is very inefficient. One solution to this is to sort the nodes of the authenti-
cation set, so that they appear in the order in which they are encountered in the
tree-hash algorithm. With this change the verifier only ever needs to compare
the encountered node to the next non-encountered node in the authentication
set.

Verifying a signature that includes an authentication set is not trivial, unfortu-
nately. When a separate authentication path is given for each given leaf, then
the tree root can be restored simply by computing the hash of the given leaf
and the first item of the authentication path, taking that hash and hashing it
together with the second item of the authentication path, and continuing this
way until the root is reached.

With authentication sets the process gets more complicated. Since there are no
more redundant nodes in the authentication set, the verifier can only reconstruct
the root node by combining all given leaves with all nodes in the authentication
set. The order in which the nodes need to be combined is not as straight-
forward as it is with traditional HORST signatures. In each step, the verifier
has the choice between using one of the items from the authentication path to
produce the next hash, or pushing the current hash to a stack and continuing
with the next given leaf. Luckily though this decision is always easy when
the efficient algorithm above is used to produce the authentication set. The
following function produces the root of the hash tree this way.

1 def verify(hashed_leaves , auth_set , auth_set_addresses , height , hashfun):
2 stack = []
3 i_auth = 0
4 i_leaf = 0
5 hash_stage = [None , None]
6 while i_auth < len(auth_set_addresses) or i_leaf < len(hashed_leaves):
7 # Pick the next given leaf
8 height = 0
9 index , current_hash = hashed_leaves[i_leaf]

10 i_leaf += 1
11 while True:
12 hash_stage[index % 2] = current_hash
13 needed_node = (height , index ^ 1)
14 # Consume as many nodes from the stack and

39

15 # the auth set as possible
16 if len(stack) > 0 and needed_node == stack [-1][0]:
17 _, hash_stage [(index % 2) ^ 1] = stack.pop()
18 elif i_auth < len(auth_set_addresses) and \
19 needed_node == auth_set_addresses[i_auth]:
20 hash_stage [(index % 2) ^ 1] = auth_set[i_auth]
21 i_auth += 1
22 else: break
23 current_hash = hashfun(hash_stage [0], hash_stage [1])
24 height += 1
25 index >>= 1
26 stack.append (((height , index), current_hash))
27
28 assert(len(stack) == 1 and (height , 0) == stack [0][0])
29 # Return the root’s hash
30 return stack [0][1]

Here, auth_set_addresses contains the addresses of the nodes in the authen-
tication set (as produced by the algorithm in Section 3.3.2), while auth_set con-
tains the hashes of the authentication set in the order dictated by auth_set_addresses;
i.e. the hash of the node with address auth_set_addresses[i] can be found
at auth_set[i].

During verification, the verifier calculates one hash for each node that is provided
by the signer. This means that using authentications sets also slightly reduces
the number of hashes that need to be calculated by the verifier. Similar to the
size of the authentication set, in SPHINCS-256 the verifier will need to calculate
352 hashes in the worst case, as opposed to 384 hashes.

3.4 Practical aspects of HORST authentication
sets

HORST authentication sets differ from traditional HORST signatures in that
their size varies even when tree size and the number of given leaves are fixed.
When it comes to using authentication sets within SPHINCS, there are two
options how this variable signature size can be handled:

• The whole SPHINCS signature could be changed to be of variable length,
in which case the overall signature size would benefit from each byte that
is saved with the HORST signature set.

• The SPHINCS signature could reserve enough room for the HORST sig-
nature in the worst case. With this approach the size of the SPHINCS
signature would still benefit from the fact that even in the worst case the
authentication set requires 32 nodes less than the HORST signature in
the SPHINCS implementation.

This section will inspect whether the reduced signature size would justify a
variable signature size for SPHINCS as a whole.

Figure 3.2 shows the results of a simulation that measures how the size of
the authentication set is distributed. The parameters in this simulation are
identical to those used in SPHINCS-256: 32 leaves of a binary tree of height

40

16 are chosen at random. The plot shows the result of 216 samples. Table 3.3
contains a statistical summary of the findings.

mean 324.265
standard deviation 7.168

minimum 286.0
25th percentile 320.0
50th percentile 325.0
75th percentile 329.0

maximum 346.0

Table 3.3: Statistical summary of the authentication set size across 216 samples.

Recall that the size of the authentication set in the best-case and worst-case
scenario was 11 and 352, respectively. Even though the authentication set could
contain as little as 11 nodes in the best case, these results show that in re-
ality most of the signatures will contain 320 to 340 nodes. Since the average
authentication-set size is much closer to the worst case than to the best case,
it would appear that the API complications that come along with variable size
signatures are not justified.

0

1000

2000

3000

300 320 340
Authentication set size

F
re

qu
en

cy

Figure 3.2: Distribution of authentication set size

Note that these results change when the number of given leaves changes; if more
leaves are revealed, then the benefit of using authentication sets increases. In
the context of the HORST signature scheme, revealing more leaf nodes would
impact the security of the scheme. However, authentication sets can be applied
whenever leaf nodes of a binary hash tree need to be authenticated, not just in
the context of HORST signatures.

Figure 3.3 shows how the size of the authentication set compares to the cumula-
tive size of separate authentication paths, for different numbers of revealed leaf

41

nodes. Here, a value of 0.3 means that the authentication set is 30% smaller
than the cumulative size of the separate authentication paths. The more leaves
are given, the more does the signature size benefit from the use of authentication
sets. Thus, while variable size signatures might not be justified for SPHINCS,
they might very well be justified in a different scheme.

●

●

●●

●

●●●

●

●●

●
●●

●●●
●
●●
●
●●●●●

●
●
●
●●
●●
●

●

●

●
●
●●●
●
●●

●●●●●

●●
●●

●●

●●
●
●

●
●
●
●●

●●
●
●●●●●
●
●●●●●

●

●●

●●●●●●

●●

●

●

●

●

●

●●●

●●●●●●

●

●

●

●●●●

●●
●●●●●●●●●
●
●

●
●●
●
●
●

●●●●●

0.00

0.25

0.50

0.75

1.00

1 2 4 8 16 32 64 128 256 512 1024 2048
given leaves

si
ze

 r
ed

uc
tio

n
(%

)

Figure 3.3: Benefit of authentication sets compared to cumulative size of au-
thentication paths, in a binary hash tree of height 16.

42

Chapter 4

Two approaches to short-term
state in SPHINCS

This chapter introduces two ways in which a short-term state can be used to
speed up SPHINCS signature creation. Section 4.1 explains why adding some
sort of state can speed up signature creation in non-standard SPHINCS. Sec-
tion 4.2 discusses general risks of stateful signature schemes, and the remainder
of this chapter introduces and compares two approaches to utilize short-term
state.

4.1 The benefit of state in SPHINCS

The reason why signature creation can be sped up by introducing a short-term
state is rooted in two properties of SPHINCS:

• A large part of the SPHINCS signature does not depend on the content
of the signed message. This allows the signer to compute parts of the
signature without knowing the message that will be signed.

• Parts of the signature can be cached and re-used to reduce the amount of
work per signature.

This section explains these properties in more detail.

Signing a message in SPHINCS involves multiple signature schemes. The verifier
needs to produce a HORST signature of the message itself, multiple WOTS sig-
natures, as well as the authentication path that allows the verifier to reproduce
the root of the hypertree. But only the computation of the HORST signature
involves the message itself; to calculate the remainder of the signature it is suf-
ficient to know the index of the leaf that is being used to sign the message.
Specifically, out of the 41, 000 bytes in a SPHINCS signature, the calculation
of 13, 352 bytes involve the message itself, and the remaining 27, 648 bytes only
depend on the index of the used leaf. In the following, the terms message-
dependent and leaf-dependent will be used to refer to those two chunks of the

43

signature.

Thus, just from knowing which leaf node is used to sign a message, the signer
can compute a significant part of the signature. In classic SPHINCS however,
the leaf node is chosen deterministically, based on the message. If the leaf node
was chosen independently of the message, then that would open up new ways to
distribute the workload of signature creation; in particular, the leaf-dependent
part of a signature could be computed before the message is known. This idea
is also explored in On-line/Off-line digital signatures by Even et al. [22].

Secondly, the leaf-dependent parts of two signatures will be partially identical,
depending on the geodesic distance between the two leaves. The closer two
leaves are to each other in terms of their geodesic distance (the number of edges
between two nodes in a graph), the smaller is the difference between the leaf-
dependent parts of the signatures. If two messages were signed with the HORST
key pair of the same leaf, then the leaf-dependent parts of those signatures would
be completely identical.

Now, combining these properties, one could construct a stateful variant of
the traditional SPHINCS signature scheme where the leaves of the hypertree
are used sequentially from left to right to sign messages, and where the leaf-
dependent parts of the signature are cached and re-used. This will minimize
the geodesic distance between the leaves that are used for two successive sig-
natures. In turn, this maximizes how much of the previous signature can be
re-used. But it does require the signer to keep track of the latest used hypertree
leaf index, and to cache parts of the signature. Since traditional SPHINCS is
a stateless signature scheme, there is no way to keep track of this information
without abandoning the stateless characteristic of traditional SPHINCS. At the
same time, stateful signature schemes are difficult to manage securely, as the
next section will explain.

A short-term state forms a hybrid solution that retains the stateless nature
of the signature scheme as a whole, but caches and re-uses the leaf-dependent
parts of the SPHINCS signature for a limited time. This allows the signer to
quickly sign messages, since only a fraction of the SPHINCS signature needs to
be recomputed for each new message. At the same time, this approach avoids
the usual downsides of a fully stateful signature schemes.

4.2 Challenges of stateful signature schemes

Stateful signature schemes come with many challenges. This section will discuss
difficulties related to backups and scalability.

With one-time signature schemes, where secret keys can only be used to sign a
single message, the verifier needs to keep track of which keys have already been
used. If this record resides in permanent storage (e.g., a hard disk), then the
signer must always use the latest version of this record to prevent accidental key
re-use. If this record is ever lost, then the key pair cannot be used any longer,
since the signer has no guarantee that any of the one-time signatures have not
been used in the past. Similarly, if this record is part of a backup, then restoring

44

this backup could lead to accidental key re-use.

Scaling a stateful signature scheme is also challenging. If the same key pair
should be used to sign messages on different threads or CPUs, then the state
needs to be synchronized between the threads or CPUs to prevent accidental
re-use of already used key material.

4.3 Short-term state in SPHINCS

A short-term state can add some of the benefits of a stateful signature scheme
without introducing the risks that come with it.

short-term states can be initialized independently, which makes SPHINCS easily
scalable. The same SPHINCS key pair can be used on different threads, CPUs,
VM instances or physical machines by simply initializing a fresh short-term state
for each instance, without any need for state synchronization.

As long as the short-term state is never written to disk, there is no risk that
restoring a backup could lead to re-use of already used key material. Of course,
as soon as a short-term state is captured in a backup, the same problems arise
that affect stateful signature schemes. For example, if a short-term state is
included in a VM-snapshot, then restoring that same snapshot multiple times
can lead to re-use of used key material.

The following sections present two ways to add a short-term state to SPHINCS.
For each approach, the following actions will be defined:

State initialization. The signer initializes a short-term state based on their
SPHINCS key pair and some chosen or pseudo-randomly produced infor-
mation. This short-term state can then be used to sign a fixed number of
messages.

State incrementation. The signer updates the short-term state after signing
a message.

Signing. The signer signs a message, using the short-term state and their own
SPHINCS key pair.

Verifying. The verifier verifies a signature on a given message.

Querying. The signer queries the number of messages that can be signed with
a given short-term state.

Key generation is not different from key generation in traditional SPHINCS.

The following notation will be used:

• h The total height of the hypertree

• d The number of subtree layers in the hypertree

• hs = h/d The height of the subtrees in the hypertree

45

4.4 Approach 1: Iterate through lowest subtree

The first approach comes with minimal changes to the signature scheme. Rather
than picking a random leaf of the hypertree for each signed message, the signer
could pick one of the subtrees at the bottom of the hypertree randomly, and use
the leaf nodes of this subtree one by one to sign messages.

This allows the signer to re-use a large portion of the signature, since most of
the message-independent parts of the SPHINCS signature are identical for each
leaf in the chosen subtree.

This approach will be referred to as sequential batch signing, since the signer
iterates over the leaves of a subtree in sequence.

State initialization. Given a SPHINCS secret key, choose a subtree on sub-
tree layer 0 by (randomly) choosing an index is ∈ [0, 2h−hs − 1]. Then choose
the index of a HORST key pair within that subtree, by (randomly) choosing an
index ih ∈ [0, 2hs − 1]. Finally, compute the root r of subtree is.

Next, compute the WOTS signature s1 by signing r with the corresponding
WOTS key pair on subtree layer 1. Compute the authentication path a1 for the
used key pair, as well as the root of the enclosing subtree. Repeat this procedure
for each subtree layer, up to the root of the hypertree.

This produces d−1WOTS signatures, as well as h−hs nodes along the authenti-
cation path. This produces the short-term state (is, ih, n, (s1, a1), . . . , (sd, ad)),
where n is the number of messages that have been signed with the short-term
state, and initialized to 0. Furthermore, sk is the WOTS signature of layer
k of the hypertree, and ak is the authentication path through layer k of the
hypertree.

Signing. Given message m, short-term state (is, ih, n, (s1, a1), . . . , (sd, ad)),
and secret key sk, check if n ≥ 2hs , in which case the signing capacity of the
short-term state has been exhausted. In that case, abort with an error.

Otherwise, compute il = ih + n mod 2hs . This is the index of the HORST
key pair within subtree is that will be used for the signature. Then compute
i = is · 2hs + il, the index of the hypertree leaf node that will be used for this
signature. Here, is · 2hs produces the index of the left-most leaf node of subtree
is.

Then produce a message hashmh and HORST signature sigH , using the HORST
key pair at leaf node i. Then produce a WOTS signature of the HORST public
key s0, and the authentication path a0 that allows the verifier to restore the root
of subtree containing i. The signature is then (mh, i, sigH , (s0, a0), . . . , (sd, ad)).

Note that this signature is structured the same way a traditional SPHINCS
signature is structured.

46

State incrementation. Whenever a message was signed using the short-term
state (is, ih, n, (s1, a1), . . . , (sd, ad)), increment the number of signed messages,
n.

Verifying. For this approach, verification works exactly the same way it works
with traditional SPHINCS signatures.

Querying. Given short-term state (is, ih, n, (s1, a1), . . . , (sd, ad)), return 2hs−
n.

4.4.1 Impact on security assumptions

With this approach, 2hs messages can be signed with a single short-term state
– one for each HORST key pair in the subtree.

Note that, while all leaf nodes of the chosen subtree are used throughout the
lifetime of a short-term state, they are not necessarily used from left to right;
the left-most leaf node of the chosen subtree is not necessarily used for the
first message signed with the short-term state. When the short-term state is
generated, a random leaf node of the hypertree is chosen. This leaf node can be
anywhere within its subtree. After that, the leaf nodes of the subtree are used
from left to right, wrapping around to the left-most node once the right-most
node was used.

This detail is crucial in cases where not each short-term state is used to its full
potential. If each short-term state started with the left-most leaf of a subtree,
and if the short-term states were not fully utilized, then the leaf nodes of the
hypertree would not be evenly used: A leaf node further left in its subtree would
be more likely to be used than a leaf node further right in its subtree. The above
approach removes this bias.

Next, we will analyze how this approach affects the collision probability amongst
the HORST key pairs. More specifically, we are interested in the probability
that a HORST key pair is used γ times or more over the lifetime of a SPHINCS
key pair. Here, γ depends on the chosen HORST parameters. HORST is a
few-times signature scheme, and its security degrades the more messages are
signed with the same key pair.

For example, SPHINCS-256 chose HORST parameters that provide 256 bit
pre-quantum security or more, as long as no HORST key pair is used to sign
γ = 9 messages or more.

The size of the hypertree was then chosen accordingly so that it becomes suf-
ficiently unlikely that any HORST key pair is used 9 times or more, while as
many as q = 250 messages can be signed over the lifetime of a SPHINCS key
pair. But how exactly can we determine how likely it is that a HORST key pair
is used a certain number of times?

The work in [48] on multi-collisions is essential for this analysis: A γ-collision
is the event that, when sampling q times from a set of n elements, the same

47

element is chosen γ or more times. In [48], the exact probability is given as a
recursive function:

Pr[C(n, q, γ)] =
1

nγ−1
·
q∑
i=γ

(
i− 1

γ − 1

)
·
(
1− 1

n

)i−γ
· (4.1)

(1− Pr[C(n, i− γ, γ)])

Using this function is rather impractical for our context, but the following upper
bound is given, too:

Pr[C(n, q, γ)] ≤ 1

nγ−1

(
q

γ

)
(4.2)

In traditional SPHINCS, these formulas can be used to compute the probabil-
ity that any HORST key pair is used γ times or more. Here, n = 2h is the
number of HORST key pairs in the hypertree. With the introduction of short-
term states, however, these formulas do not apply any more. Now, rather than
choosing a HORST key pair pseudo-randomly for each message, a subtree on the
lowest hypertree layer is chosen pseudo-randomly, and used to sign a number of
messages.

Let k, 1 ≤ k ≤ 2hs be the number of messages that are signed with each short-
term state on average. Then q/k short-term states need to be initialized to sign
q messages. With each short-term state initialization, one of the 2h−hs subtrees
is chosen pseudo-randomly.

Following the approach in [48, p. 31], we can model the probability of a γ-
collision with the following experiment: We throw a total of q balls at 2h buckets.
The buckets are arranged in groups of size 2hs , forming 2h−hs groups. Instead
of throwing the balls one by one, they are thrown in volleys of k balls, with
1 ≤ k ≤ 2hs . Each of the v = q/k volleys is aimed at one group, chosen at
random. Within each group, the 2hs buckets are arranged in a circle. When
a volley hits a group, the first ball of the volley hits one of the 2hs buckets,
chosen at random. The remaining k − 1 balls of the volley hit the following
k− 1 successors of that bucket, moving clockwise through the circle of buckets.
Note that in a single volley, no bucket can be hit more than once.

Let us first discuss the probability that a bucket B is hit in a volley. Let
HB(k, h, hs) denote the event that bucket B is hit in a volley of k balls, with
2h buckets in total, and bucket groups of size 2hs . Let Hgroup(B)(h, hs) denote
the event that the group of bucket B is hit in a volley, with 2h buckets in total,
and groups of size 2hs . We know that Pr[Hgroup(B)(h, hs)] =

1
2h−hs

since there
are 2h−hs groups in total, and a volley hits exactly one of them.

Pr[HB(k, h, hs)|Hgroup(B)(h, hs)] is the probability that B is hit, given that the
group containing B is hit. We know that Pr[HB(k, h, hs)|Hgroup(B)(h, hs)] =
k

2hs
, because B is hit if the first ball of the volley either hits B itself, or any of

the k − 1 predecessors of B, moving counter-clockwise. Thus,

Pr[HB(k, h, hs)] = Pr[HB(k, h, hs)|Hgroup(B)(h, hs)] · Pr[Hgroup(B)(h, hs)]

=
1

2h−hs
· k
2hs

=
k

2h
.

48

Let CSTS(h, hs, q, k, γ) denote the event that after throwing q balls, in volleys
of k balls each, at 2h buckets grouped into groups of size 2hs , there is at least
one bucket containing at least γ balls.

Let CSTS−i(h, hs, v, k, γ, i) denote the event that a γ-collision occurs in the ith
volley – that is, when the ith volley is thrown, one of the buckets will contain γ
balls. Note that a γ-collision cannot occur before γ volleys have been thrown,
since a bucket can be hit at most once per volley. Then

Pr[CSTS(h, hs, q, k, γ)] =

q/k∑
i=γ

Pr[CSTS−i(h, hs, q/k, k, γ, i)].

We can find Pr[CSTS−i(h, hs, v, k, γ, i)] as follows:

• One bucket B can be selected from 2h buckets in 2h ways.

• γ − 1 volleys that hit B can be selected from the previous i− 1 volleys in(
i−1
γ−1
)
ways.

• The probability that the γ selected volleys hit B is
(

1
2h−hs

· k
2hs

)γ
.

• The probability that none of the other i− γ volleys hit B is(
1− 1

2h−hs
· k
2hs

)i−γ · (1− Pr[CSTS(h, hs, i− γ, k, γ)]).
Then

Pr[CSTS−i(h, hs, q, k, γ, i)] = 2h ·
(
i− 1

γ − 1

)
·
(

1

2h−hs
· k
2hs

)γ
·(

1− 1

2h−hs
· k
2hs

)i−γ
·

(1− Pr[CSTS(h, hs, i− γ, k, γ)])

= 2h ·
(
i− 1

γ − 1

)
·
(
k

2h

)γ
·
(
1− k

2h

)i−γ
·

(1− Pr[CSTS(h, hs, i− γ, k, γ)])

=
kγ

(2h)γ−1
·
(
i− 1

γ − 1

)
·
(
1− k

2h

)i−γ
·

(1− Pr[CSTS(h, hs, i− γ, k, γ)]) .

Thus we have

Pr[CSTS(h, hs, q, k, γ)] =

q/k∑
i=γ

Pr[CSTS−i(h, hs, q/k, k, γ, i)] (4.3)

=
kγ

(2h)γ−1
·
q/k∑
i=γ

(
i− 1

γ − 1

)
·
(
1− k

2h

)i−γ
·

(1− Pr[CSTS(h, hs, i− γ, k, γ)]) .

49

Using [48, Lemma 1(1)], we can derive an upper bound for this formula:

Pr[CSTS(h, hs, q, k, γ)] ≤
kγ

(2h)γ−1
·
(
q/k

γ

)
(4.4)

Note that for k = 1, Formula 4.3 is equal to Formula 4.1:

Pr[CSTS(h, hs, q, 1, γ)] =
1γ

(2h)γ−1
·
q∑
i=γ

(
i− 1

γ − 1

)
·
(
1− 1

2h

)i−γ
·

(1− Pr[CSTS(h, hs, i− γ, 1, γ)])
= Pr[C(2h, q, γ)].

The formulas are not equal for other values of k, though. For example with
k ≥ 2, we can compare what can happen when signing two messages with
classic SPHINCS on the one hand, or with sequential batch signing on the other
hand. In classic SPHINCS, while highly unlikely, it is possible that the same
HORST key pair is picked twice for signing two consecutive messages. When
using sequential batch signing, however, we only pick a subtree once during
short-term state initialization. After that, two different HORST key pairs will
be used to sign the two messages. Thus, the probability of a 2-collision after
signing just two messages is zero when using sequential batch signing, but it is
non-zero in classic SPHINCS.

To better understand the difference between the two exact formulas, we can
compare the two upper bound formulas 4.4 and 4.2:

kγ

(2h)γ−1
·
(
q/k

γ

)
?
=

1

(2h)γ−1
·
(
q

γ

)
kγ

(2h)γ−1
· (q/k)!

γ!(q/k − γ)!
?
=

1

(2h)γ−1
· q!

γ!(q − γ)!

kγ · (q/k)!

(q/k − γ)!
?
=

q!

(q − γ)!

Note that, in the context of SPHINCS, q � k and q � γ, so that k and γ
become negligible, leaving us with

q!

q!
=
q!

q!
.

Thus, the probability that the same HORST key pair is used γ or more times
has roughly the same upper bound in classic SPHINCS and in SPHINCS with
sequential batch signing.

We will return to these formulas in Section 4.7 when discussing parameters, and
show that the probability of a γ-collision for SPHINCS-256 parameters is equally
unlikely in classic SPHINCS and SPHINCS with sequential batch signing.

50

4.5 Approach 2: Add a short-term subtree below
HORST

In this approach, batch signing is implemented by adding a short-term subtree
of height hb underneath a randomly chosen leaf il of the hypertree, and using
the WOTS key pairs at the leaves of this subtree to sign a sequence of messages.
The HORST key pair at leaf il of the hypertree is then used to sign the two
nodes on layer hb − 1 of the short-term subtree. Section 4.5.1 will explain why
HORST is used to sign two nodes, rather than simply signing the root of the
short-term state subtree.

This approach will be referred to as subtree batch signing, since it essentially
adds a dedicated subtree to the hypertree.

State initialization. Given a SPHINCS secret key, choose a leaf of the hy-
pertree by (randomly) choosing an index il ∈ [0, 2h − 1].

Now, randomly produce a seed seedW to generate the WOTS key pairs of the
short-term subtree. Produce the two nodes nhb−1,0, nhb−1,1 of the short-term
subtree, and sign nhb−1,0||nhb−1,1 with the HORST key pair at index il, pro-
ducing HORST signature sH . Then produce the rest of the SPHINCS signature
that allows the verifier to restore the root of the hypertree. This signature is
stored in the state so that the signer does not need to recompute it later. The
short-term state is then (0, il, seedW , sH , (s0, a0), . . . , (sd, ad)). Here, the first
element is the index of the leaf in the short-term subtree that should be used
to sign the next message, and is initialized to 0.

Signing. Given message m, SPHINCS secret key sk and short-term state
(is, il, seed, sH , (s0, a0), . . . , (sd, ad)), check if is ≥ 2hb . In that case, abort with
an error, since the signing capacity of the short-term state has been exhausted.

Otherwise, produce the WOTS key pair at index is of the short-term sub-
tree from the seed in the short-term state. Produce a message hash from
the message m, the seed in sk, and the indices il and is, yielding mh. Sign
the message hash mh using this key pair, producing WOTS signature sW .
Compute the authentication path as that allows the verifier to restore the
two nodes nhb−1,0, nhb−1,1 of the short-term subtree. The signature is then
(mh, is, il, sW , as, sH , (s0, a0), . . . , (sd, ad).

State incrementation. Whenever a message was signed using the short-term
state (is, il, seed, sH , (s0, a0), . . . , (sd, ad)), increment is.

Verifying. Given messagem, SPHINCS public key pk and signature (mh, is, il,
sW , as, sH , (s0, a0), . . . , (sd, ad), the verifier restores the nodes nhb−1,0, nhb−1,1
of the short-term subtree using m, mh, sW , is and as. They then restore the
public key pkH of the used HORST key pair from the two nodes and sH . After
that, the verifier works their way up through the hypertree using the WOTS
signature si and authentication path ai on each hypertree layer i. This produces

51

the root rh of the hypertree. The signature is valid if this root matches the root
stored in the SPHINCS public key pk.

Querying. Given short-term state (is, il, seed, sH , (s0, a0), . . . , (sd, ad)), re-
turn is − 2hb .

4.5.1 Impact on security assumptions

In SPHINCS-256, HORST is configured to sign a message hash of 64 bytes.
In this approach, HORST signs the two nodes on layer hs − 1 of the short-
term subtree. This construction might seem rather arbitrary. This section
will analyze why HORST cannot be used to simply sign the root of the short-
term subtree, which has only 32 bytes, while providing 256 bits of pre-quantum
security.

The size of the signed message has an impact on the security of the scheme. Let
us assume that HORST was used to sign just the 32 bytes root of the subtree.
With t = 216, each signature would reveal k = 256/16 = 16 elements to sign
the 32 · 8 = 256 bits of the subtree root. As outlined in [44], HORS provides
k(log t− log k − log r) bits of pre-quantum security after r messages have been
signed. With t = 16 and k = 16, the scheme only offers 176 bits of security
after the first message was signed, and that quickly deteriorates as r grows.

For comparison, SPHINCS-256 uses t = 216 and k = 32, yielding 352 bits of
pre-quantum security after the first message was signed, and 256 bits of security
after 8 messages have been signed.

Of course the 32 bytes could be expanded to 64 bytes using the same function
that maps a message to a message hash. But since there are only 232·8 = 2256

possible values for the root of the short-term state subtree, these values can
only ever map to 2256 values in the co-domain of the message hash, since that
hash function is deterministic. This does not line up with the model that is
used in [44], which assumes that the hash function is a random oracle.

Figure 4.1 plots fb(t) = k(log2(t)−log2(k)−1), k = b/ log2(t) for b = 512 (upper
curve), and b = 256 (lower curve), or how many bits of security are provided by
HORS when signing 512-bit or 256-bit messages, respectively, after one message
has been signed.

The graph clearly shows that no practical parameter choice can reach 256-bits
of pre-quantum security when signing 256-bit messages. Increasing t increases
the security of HORS, but only logarithmically. In addition to that, it would
harm the performance of HORS as the number of key elements would grow
exponentially. Decreasing t would increase k, but HORS offers poor security as
log2 k approaches log2 t.

In conclusion, it is not practical to achieve 256-bits of pre-quantum security in
HORS when signing 256-bit messages. This is why HORST is used to sign the
two nodes on layer hb − 1 instead.

52

100

200

300

400

210 215 220 225 230

t

bi
ts

 o
f p

re
−

qu
an

tu
m

 s
ec

ur
ity

Figure 4.1: The security provided by HORS when signing 512 bit messages
(upper curve) and 256 bit messages (lower curve), after one message has been
signed.

4.6 The two approaches in comparison

This section gives only a brief, theoretical comparison of the two approaches. A
more in-depth comparison follows in Chapter 5, along with speed measurements.

Signatures produced with sequential batch signing are identical to the signatures
produced by SPHINCS. This has the advantage that the verifier does not need
to know whether the signer used batch signing to produce this signature. The
signer can thus freely decide to use batch signing as needed. This is not the case
for subtree batch signing, since those signatures are different from traditional
SPHINCS signatures.

Signatures produced with subtree batch signing do not need to recompute the
HORST signature. Combined with the fact that WOTS public keys can be
cached in the short-term state, this reduces the work per signature significantly
for subtree batch signing, as Chapter 5 will show.

4.7 Parameter discussion

The two approaches were designed with different goals in mind. While sequen-
tial batch signing serves as a drop-in replacement for traditional SPHINCS-256,
subtree batch signing is aimed at situations that can fully utilize batch signa-
tures. This section discusses the decision process behind the parameters that
were chosen for the two variants.

53

4.7.1 Sequential batch signing

Sequential batch signing uses the same parameters as SPHINCS-256, so that it
can be used in any context where SPHINCS-256 is used today: For individual
signatures, it can be as fast as SPHINCS-256. But if the short-term state is used
to its full potential, signatures are about four times faster thanks to the cached
signature elements. Finally, just like with SPHINCS-256, up to 250 messages can
safely be signed with a single key pair, no matter if the signer uses a short-term
state just for a single signature, or to its full potential.

SPHINCS-256 parameters were chosen so that each HORST key pair can be
reused up to eight times before security drops below 256 bit. With a hypertree
height of h = 60, the probability that any HORST key pair is used nine times
or more when signing q = 250 messages is at most

Pr[C(260, 250, 9)] ≤ 1

(260)8

(
250

9

)
≈ 2−48,

using the upper bound formula in [48, p. 32].

Recall that the probability of such a multi-collision in the case of sequential
batch signing needs to be computed with Formula 4.4, instead. This formula is
parameterized with the number of messages signed with each short-term state,
but we find that for any value of k for 1 ≤ k ≤ 32,

Pr[CSTS(60, 5, 2
50, k, 9)] ≤ k9

(260)8
·
(
250/k

9

)
≈ 2−48, 1 ≤ k ≤ 32.

Thus, when using sequential batch signing, it remains sufficiently unlikely that
any HORST key pair is used nine times or more, no matter how many messages
are signed with each short-term state.

4.7.2 Subtree batch signing

Subtree batch signing offers more flexibility in its parameter choices. Its de-
sign goal is to offer a significant speed-up compared to simple SPHINCS-256
signatures, without a significant increase in signature size, or reduced security.
Furthermore, the height of the short-term state subtree can be different from
the height of the other subtrees in the hypertree. This adds some flexibility to
balance short-term state initialization time with the number of signatures that
can be created with each short-term state.

Hypertree height. The total height of the hypertree determines the number
of HORST key pairs at the leaf nodes of the hypertree. For subtree batch sign-
ing, each short-term state creates a subtree that is signed by one such HORST
key pair. The number of HORST key pairs affects the number of short-term
states that can be initialized with the same key pair, since each HORST key
pair is only safe to use for a limited number of signatures.

54

The hypertree height is set to h = 60, matching the hypertree height of
SPHINCS-256. With this, up to 250 short-term states can be initialized, while
maintaining 256 bits of pre-quantum security.

Subtree height. The large hypertree in SPHINCS consists of many layers of
smaller subtrees. This way, the hypertree can have as many as 60 layers, while
the tree never needs to be computed in its entirety.

The height of the subtrees has no effect on the security of the scheme, but
is chosen as a trade-off between signature size and signing speed. In classic
SPHINCS, the subtree height hs and the total height h = 60 of the hypertree
determine the number of subtree layers d = 60/hs. For each subtree layer, one
WOTS signature is included in the SPHINCS signature. This makes the subtree
height roughly inverse proportional to the signature size. At the same time,
changing the subtree height changes the signing speed exponentially: Increasing
the subtree height by 1 doubles the number of WOTS key pairs at the leaf nodes
of every subtree.

Subtree batch signing introduces a second tree height, hb, for the height of the
short-term state subtree. It is important to understand the difference between
the roles of these two parameters. Changing hb changes the signature size only
marginally via the number of nodes in the short-term state subtree authentica-
tion path.

The choice of hb has an exponential effect on the initialization time of a new
short-term state; increasing hb by one doubles the number of WOTS key pairs
that need to be generated to build the short-term state subtree. However, this
cost is averaged over all signatures created with that short-term state.

More importantly, we can pick hb to compensate larger choices of hs: Incre-
menting hs doubles the work necessary to produce all WOTS key pairs in the
hypertree. However, with subtree batch signing, that work is averaged over all
signatures created with a single short-term state. Classic SPHINCS had to be
conservative with hs to balance signature size with signing speed. With subtree
batch signatures, we can increase hs further to reach smaller signatures, and
increase hb to average the additional work over more signatures.

The choice of hs and hb also affects the size of the short-term state, but since
the short-term state is only stored locally, we did not consider its size when
fixing parameters.

Figures 4.2, 4.3, and 4.4 illustrate the relations outlined above. On that basis,
we define hs = 10, and hb = 12, implying d = 6.

With this configuration, up to 262 messages can be signed with one key pair, if
all short-term states are used to their full potential. Initializing the short-term
state takes as long as 32 classic SPHINCS signatures, but once the short-term
state is created, up to 4096 messages can be signed with it. We justify the high
initialization time of the short-term state with the design goal of this approach:
These parameters are chosen for cases where the short-term state is usually
used to sign as many messages as possible. For other cases, sequential batch
signatures might be a better choice.

55

61.0KB 50.5KB 44.2KB 40.0KB 31.7KB

61.0KB 50.5KB 44.3KB 40.1KB 31.7KB

61.0KB 50.6KB 44.3KB 40.1KB 31.7KB

61.1KB 50.6KB 44.3KB 40.1KB 31.8KB

61.2KB 50.7KB 44.5KB 40.3KB 31.9KB

61.3KB 50.8KB 44.5KB 40.3KB 32.0KB

 3

 4

 5

 6

 10

 12

 3 4 5 6 10
Subtree height

S
ho

rt
−

tim
e

st
at

e
su

bt
re

e
he

ig
ht

40000

50000

60000

Signature size (Bytes)

Figure 4.2: The signature size for various choices of subtree height hs and short-
term state subtree height hb.

On average, these parameters speed up signing by a factor of 128, compared to
classic SPHINCS, while reducing the size of the signature from 41, 000 bytes to
32, 720 bytes.

4.8 Creating successive short-term states

The sequential batch signing approach utilizes the overlap between signatures
created with neighboring leaf nodes. This approach can be taken a step further
to speed up the creation of successive short-term states, for both sequential
batch signing and subtree batch signing. This idea has not been implemented
for this thesis, but the potential benefit is promising.

Utilizing the BDS algorithm from [13], it should be possible to cache a number
of nodes throughout the hypertree to quickly produce a new short-term state.
The parameters of the BDS algorithm can be tweaked to balance the number of
cached nodes against the computational cost to create a new short-term state.

The creation of the next short-term state could even be off-loaded to a differ-
ent thread, core, or computer, while another short-term state is used to sign
messages.

56

1.5 * 2^30 1.0 * 2^31 1.5 * 2^31 1.1 * 2^32 1.2 * 2^35

1.6 * 2^30 1.1 * 2^31 1.5 * 2^31 1.2 * 2^32 1.2 * 2^35

1.8 * 2^30 1.2 * 2^31 1.6 * 2^31 1.2 * 2^32 1.2 * 2^35

1.1 * 2^31 1.4 * 2^31 1.8 * 2^31 1.3 * 2^32 1.3 * 2^35

1.8 * 2^33 1.8 * 2^33 1.9 * 2^33 1.1 * 2^34 1.6 * 2^35

1.6 * 2^35 1.6 * 2^35 1.7 * 2^35 1.7 * 2^35 1.4 * 2^36

 3

 4

 5

 6

 10

 12

 3 4 5 6 10
Subtree height

S
ho

rt
−

tim
e

st
at

e
su

bt
re

e
he

ig
ht

231

232

233

234

235

236

STS init

Figure 4.3: The cost, in cycles, to initialize a new short-term state, for various
choices of subtree height hs and short-term state subtree height hb.

1.6 * 2^27 1.0 * 2^28 1.5 * 2^28 1.2 * 2^29 1.2 * 2^32

1.7 * 2^26 1.1 * 2^27 1.6 * 2^27 1.2 * 2^28 1.2 * 2^31

1.0 * 2^26 1.3 * 2^26 1.7 * 2^26 1.3 * 2^27 1.3 * 2^30

1.3 * 2^25 1.6 * 2^25 1.0 * 2^26 1.4 * 2^26 1.3 * 2^29

1.4 * 2^24 1.4 * 2^24 1.5 * 2^24 1.6 * 2^24 1.9 * 2^25

1.7 * 2^24 1.8 * 2^24 1.8 * 2^24 1.8 * 2^24 1.2 * 2^25

 3

 4

 5

 6

 10

 12

 3 4 5 6 10
Subtree height

S
ho

rt
−

tim
e

st
at

e
su

bt
re

e
he

ig
ht

226

228

230

232

Avg. cycles

Figure 4.4: The average cost, in cycles, of one signature, for various choices
of subtree height hs and short-term state subtree height hb. The cycle count
includes the cost to initialize the short-term state, averaged over all signatures
that can be created with one short-term state.

57

Chapter 5

Implementation and results

This chapter shows how batch signing speeds up signature creation in practice.
The first part of this chapter will explain in general how signing speed benefits
from batch signing. The second part will then show specific measurements to
compare traditional SPHINCS signatures to the two batch signing variants.

Measurements in this chapter are based on the cycle count reported by the CPU.
So far, the short-term state variants of SPHINCS have not been heavily opti-
mized, and are based on the reference implementation of SPHINCS, available
in the SUPERCOP benchmarking suite1.

5.1 Benefits of batch signing

There are two major effects that cause SPHINCS batch signatures to be much
faster than traditional SPHINCS signatures. Firstly, batch signing utilizes the
fact that two signatures are very similar if their used leaf nodes are close to
each other. In traditional SPHINCS, when two messages are signed with two
leaves that are part of the same subtree on layer 0, then 25 of the 41kB of those
signatures will be identical. Batch signing benefits from this fact and computes
the unchanged parts of the signature only once.

Secondly, batch signing can further reduce the amount of data that is computed
for each signature by caching the WOTS public keys of the lowest subtree. Recall
that the SPHINCS signature contains authentication paths for each subtree.
The authentication paths of all subtrees on layer 1 and above are only computed
once, and are stored in the short-term state. The authentication path for the
lowest subtree, however, changes with each signature, since each signature uses
a different leaf of the subtree.

Computing the authentication path of a subtree requires the WOTS public
keys that form the leaf nodes of that subtree. Since the WOTS key pairs are
usually generated on demand, obtaining these leaf nodes is a serious effort.
For SPHINCS-256 with WOTS parameters l = 67 and w = 16, this requires

1http://bench.cr.yp.to/supercop.html

58

http://bench.cr.yp.to/supercop.html

16 · 67 + 27 − 1 = 1199 hashes. For subtree batch signing, where l = 131, even
2223 hashes need to be computed.

Thus, caching the WOTS public keys in the short-term state saves a lot of
hashes. This gives another significant boost to the speed of batch signatures.
Caching these values does have an impact on the memory footprint, though,
as the 4096 WOTS public keys account for 212 · 32 = 131, 072 bytes of the
short-term state size.

If it is not an option to store all WOTS public keys in the short-term state, then
techniques similar to those used in [32], based on the work in [13], can be applied
as a trade-off between the number of WOTS signatures stored in the short-term
state and the number of WOTS signatures that have to be re-computed for each
new authentication path. More specifically, with the algorithm presented in [13],
one can choose parameter K,K ≥ 2, such that 12 − K is even, as a trade-off
between the number of nodes that need to be cached in the short-term state,
and the number of leaf nodes and inner nodes that need to be computed for each
new signature [13, Theorem 2, with H = 12]. For example, with K = 2, the
short-term state would need to store 32 nodes, and 6 leaf nodes would need to
be computed for each new signature. With K = 10, the short-term state would
need to store 1004 nodes, but only 2 leaf nodes would need to be computed for
each new signature.

5.2 Results

This section will first show how the batch-signing variants compare to tradi-
tional SPHINCS signatures in general. It will then present the benefits of batch
signatures as compared to traditional signatures. Finally, it will show how the
subtree height affects the performance. In this section, the cost of a signature
refers to the measured number of cycles that it took to generate this signature.

Note that the performance of the batch signing variants is compared to the
reference implementation of SPHINCS, not the optimized implementation of
SPHINCS. The implementations were benchmarked on an Intel Haswell i5 −
4690K CPU running at 4.3 GHz, with Turbo Boost and hyper-threading dis-
abled. The following code was used to query the current cycle count:

1 static __inline__ unsigned long GetCC(void)
2 {
3 unsigned a, d;
4 asm volatile("rdtsc" : "=a" (a), "=d" (d));
5 return ((unsigned long)a) | (((unsigned long)d) << 32);
6 }

Table 5.1 shows the sizes of signatures and key pairs for traditional SPHINCS
signatures as well as for the two batch signature variants. Signatures produced
by either of the two batch signing variants are not larger than SPHINCS sig-
natures; in fact, when using the subtree approach, the produced signature will
even be over 8KB smaller than traditional SPHINCS signatures, due to fewer
subtree layers in the hypertree.

59

signature pk sk short-term state
SPHINCS 41, 000B 64B 96B n/a

subtree 32, 720B 64B 96B 159, 280B
sequential 41, 000B 64B 96B 26, 384B

Table 5.1: Size of signature, key pairs and short-term state.

Figure 5.1 shows various performance measurements to illustrate the differences
between classic SPHINCS and the two batch signing variants. The data shows
that there is no performance penalty if a user was to use sequential batch signing
for just a single signature: Initializing a short-term state for sequential batch
signing, and then signing a message takes just as long as a classic SPHINCS
signature. Similarly, creating a key pair for sequential batch signing is just as
fast as it is for classic SPHINCS.

When sequential batch signing is used to sign the full 32 messages that can be
signed with a short-term state, then on average a message can be signed about
4.7 times faster than with classic SPHINCS.

These results confirm that sequential batch signatures are a suitable drop-in
replacement for classic SPHINCS: Signatures are just as fast when the short-
term state is used to sign just one message, and the better the short-term state
is utilized, the faster is the signing process. At the same time, the number of
messages that can be signed with one key pair is not affected by the use of the
short-term state.

Figure 5.1 also shows that the results for subtree batch signing look noticeably
different. Creating a key pair for subtree batch signing takes considerably longer
than for the other two variants, due to the taller subtrees in the hypertree.
Similarly, initializing a short-term state is a significant effort at over 236 cycles.
Because of that, subtree batch signing performs poorly if a short-term state was
only used to sign a single message.

However, when the short-term state is used to its full potential, subtree batch
signing outperforms both classic SPHINCS as well as sequential batch signing
by a large margin. Averaged over all 4096 signatures that can be created with
a single short-term state, each signature only costs slightly over 225 cycles.
Compared to the reference implementation of classic SPHINCS, that is a speed-
up by a factor of 86.

Finally, verifying is slightly faster for subtree batch signing, due to the reduced
number of WOTS signatures that have to be verified.

5.2.1 Utilization

After a short-term state has been initialized, it can be used to produce a fixed
number of signatures. In practice, it might be difficult to make sure that each
short-term state is perfectly utilized. Also, especially if signatures are created
infrequently, it might be tempting to use SPHINCS without the batch signing
capabilities introduced in this thesis, so that the short-term state does not need
to be cached in between signatures.

60

220

225

230

235

 Init Init + Sign Keypair Per signature Sign Verify
Operation

C
yc

le
s

Scheme

Sequential

SPHINCS

Subtree

Figure 5.1: The cost of various operations for the different schemes. Here,
Keypair is the cost for creating a key pair, Init is the cost for initializing a short-
term state, Sign and Verify are the costs for one signature and verification,
respectively. Init + Sign shows the cost of the first signature, ignoring all
benefits of batch signing. Per signature shows the benefit of batch signing, as
the cost to initialize a short-term state is averaged over the 32 or 4096 signatures
that can be created from one short-term state, using sequential or subtree batch
signing, respectively.

Figure 5.2 shows how the cost per signature changes as utilization changes.
These measurements show that short-term states do not need to be fully utilized
in order to benefit from the performance boost. In fact, the performance boost
is significant even if as little as 25% of the signatures are actually used.

Furthermore, we saw before that it is a significant computational effort to create
short-term states for subtree batch signatures. The results in Figure 5.2 show
that this effort pays off long before a significant portion of the short-term state
is utilized. As expected, the cost per signature with subtree batch signatures is
higher than the cost per signature for the other schemes, if the short-term state
is only used for a small number of signatures. However, as long as more than
32 messages are signed with each short-term state, it is faster to create and use
a subtree short-term state than to use either of the other methods.

5.3 Conclusion

This thesis introduced two approaches to batch signatures in SPHINCS. Sequen-
tial batch signatures are a suitable drop-in replacement for classic SPHINCS,
with no performance penalty when it is used just for a single signature, and

61

226

228

230

232

234

236

0.00 0.25 0.50 0.75 1.00
Utilization

C
yc

le
s

pe
r

si
gn

at
ur

e

Approach

Sequential

SPHINCS

Subtree

Figure 5.2: The cost per signature relative to the utilization of the short-term
state. Here, a utilization of p means that 100 · p% of the signatures in the
short-term state have been used.

4× faster signatures when utilizing at least half of the signing capacity of each
short-term state. Subtree batch signatures are a powerful solution for situa-
tions in which batch signing can be fully utilized, offering smaller signatures,
16× faster signatures at 25% utilization, and 80× faster signatures at 100%
utilization.

Future work should explore options to speed up the creation of successive short-
term states to further speed up signature creation.

62

Bibliography

[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao,
David A Buell, et al. Quantum supremacy using a programmable supercon-
ducting processor. Nature, 574(7779):505–510, 2019. https://authors.
library.caltech.edu/99516/2/41586_2019_1666_MOESM1_ESM.pdf.

[2] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless
hash-based signatures. In Nigel P. Smart, editor, Topics in Cryptology –
CT-RSA 2018, pages 219–242, Cham, 2018. Springer International Pub-
lishing. https://eprint.iacr.org/2017/933.pdf.

[3] Sundar Balasubramanian, Harold W Carter, Andrey Bogdanov, Andy
Rupp, and Jintai Ding. Fast multivariate signature generation in hardware:
The case of rainbow. In 2008 International Conference on Application-
Specific Systems, Architectures and Processors, pages 25–30. IEEE, 2008.
https://sci-hub.se/10.1109/asap.2008.4580149.

[4] Paulo SLM. Barreto, Rafael Misoczki, and Marcos A. Simplicio Jr.
One-time signature scheme from syndrome decoding over generic error-
correcting codes. Journal of Systems and Software, 84(2):198–204, 2011.
https://sci-hub.se/10.1016/j.jss.2010.09.016.

[5] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards
making UOWHFs practical. In Burton S. Kaliski, editor, Advances in
Cryptology — CRYPTO ’97, pages 470–484. Springer Berlin Heidelberg,
1997. https://cseweb.ucsd.edu/~mihir/papers/tcr-hash.pdf.

[6] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the in-
herent intractability of certain coding problems. IEEE Transactions on
Information Theory, 24(3):384–386, 1978. https://authors.library.
caltech.edu/5607/1/BERieeetit78.pdf.

[7] Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor, Post-
Quantum Cryptography, pages 73–80, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. https://cr.yp.to/codes/grovercode-20100303.
pdf.

[8] Daniel J. Bernstein, Jean-François Biasse, and Michele Mosca. A low-
resource quantum factoring algorithm. In Tanja Lange and Tsuyoshi Tak-
agi, editors, Post-Quantum Cryptography, pages 330–346, Cham, 2017.
Springer International Publishing. https://eprint.iacr.org/2017/352.

63

https://authors.library.caltech.edu/99516/2/41586_2019_1666_MOESM1_ESM.pdf
https://authors.library.caltech.edu/99516/2/41586_2019_1666_MOESM1_ESM.pdf
https://eprint.iacr.org/2017/933.pdf
https://sci-hub.se/10.1109/asap.2008.4580149
https://sci-hub.se/10.1016/j.jss.2010.09.016
https://cseweb.ucsd.edu/~mihir/papers/tcr-hash.pdf
https://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
https://authors.library.caltech.edu/5607/1/BERieeetit78.pdf
https://cr.yp.to/codes/grovercode-20100303.pdf
https://cr.yp.to/codes/grovercode-20100303.pdf
https://eprint.iacr.org/2017/352

[9] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter
Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-
based signatures. In Marc Fischlin and Elisabeth Oswald, editors, Ad-
vances in Cryptology – EUROCRYPT 2015, volume 9056 of Lecture Notes
in Computer Science, pages 368–397. Springer Berlin Heidelberg, 2015.
Document ID: 5c2820cfddf4e259cc7ea1eda384c9f9, https://cryptojedi.
org/papers/#sphincs.

[10] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf.
Time-area optimized public-key engines: MQ-cryptosystems as replace-
ment for elliptic curves? In Elisabeth Oswald and Pankaj Rohatgi, editors,
Cryptographic Hardware and Embedded Systems – CHES 2008, pages 45–
61, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. https://link.
springer.com/content/pdf/10.1007/978-3-540-85053-3_4.pdf.

[11] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan
Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut
Neven. Characterizing quantum supremacy in near-term devices. Nature
Physics, 14(6):595–600, 2017. https://arxiv.org/pdf/1608.00263.pdf.

[12] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a prac-
tical forward secure signature scheme based on minimal security assump-
tions. In Bo-Yin Yang, editor, Post-Quantum Cryptography, pages 117–129.
Springer Berlin Heidelberg, 2011. https://eprint.iacr.org/2011/484.
pdf.

[13] Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle tree
traversal revisited. In Johannes Buchmann and Jintai Ding, editors,
Post-Quantum Cryptography, pages 63–78. Springer Berlin Heidelberg,
2008. https://www-old.cdc.informatik.tu-darmstadt.de/reports/
reports/BDS08.pdf.

[14] Johannes Buchmann, Luis Carlos Coronado García, Erik Dahmen, Martin
Döring, and Elena Klintsevich. CMSS – an improved Merkle signature
scheme. In Rana Barua and Tanja Lange, editors, Progress in Cryptology
- INDOCRYPT 2006, pages 349–363, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. https://eprint.iacr.org/2006/320.pdf.

[15] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security esti-
mates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryp-
tology – ASIACRYPT 2011, pages 1–20, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. https://link.springer.com/content/pdf/10.1007/
978-3-642-25385-0_1.pdf.

[16] Nicolas T. Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to
achieve a McEliece-based digital signature scheme. In Colin Boyd, edi-
tor, Advances in Cryptology — ASIACRYPT 2001, pages 157–174, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg. https://link.springer.
com/content/pdf/10.1007/3-540-45682-1_10.pdf.

[17] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille Vuillaume.
Digital signatures out of second-preimage resistant hash functions. In

64

https://cryptojedi.org/papers/#sphincs
https://cryptojedi.org/papers/#sphincs
https://link.springer.com/content/pdf/10.1007/978-3-540-85053-3_4.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-85053-3_4.pdf
https://arxiv.org/pdf/1608.00263.pdf
https://eprint.iacr.org/2011/484.pdf
https://eprint.iacr.org/2011/484.pdf
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/BDS08.pdf
https://www-old.cdc.informatik.tu-darmstadt.de/reports/reports/BDS08.pdf
https://eprint.iacr.org/2006/320.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-25385-0_1.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-25385-0_1.pdf
https://link.springer.com/content/pdf/10.1007/3-540-45682-1_10.pdf
https://link.springer.com/content/pdf/10.1007/3-540-45682-1_10.pdf

Johannes Buchmann and Jintai Ding, editors, Post-Quantum Cryptogra-
phy: Second International Workshop, PQCrypto 2008 Cincinnati, OH,
USA, October 17-19, 2008 Proceedings, pages 109–123, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. https://whereisscihub.now.sh/go/
10.1007/978-3-540-88403-3_8.

[18] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE transactions on Information Theory, 22(6):644–654, 1976. https:
//caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B08.pdf.

[19] Hang Dinh, Cristopher Moore, and Alexander Russell. McEliece
and Niederreiter cryptosystems that resist quantum Fourier sampling
attacks. In Phillip Rogaway, editor, Advances in Cryptology –
CRYPTO 2011, pages 761–779, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg. https://link.springer.com/content/pdf/10.1007/
978-3-642-22792-9_43.pdf.

[20] Chris Dods, Nigel P. Smart, and Martijn Stam. Hash based digital
signature schemes. In Nigel P. Smart, editor, Cryptography and Cod-
ing, pages 96–115, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
https://whereisscihub.now.sh/go/10.1007/11586821_8.

[21] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 40–56,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. https://link.
springer.com/content/pdf/10.1007/978-3-642-40041-4_3.pdf.

[22] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
signatures. In Gilles Brassard, editor, Advances in Cryptology — CRYPTO’
89 Proceedings, pages 263–275, New York, NY, 1990. Springer New York.
https://sci-hub.se/10.1007/0-387-34805-0_24.

[23] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel
Smart, editor, Advances in Cryptology – EUROCRYPT 2008, pages 31–
51, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. https://link.
springer.com/content/pdf/10.1007/978-3-540-78967-3_3.pdf.

[24] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
page 197–206, New York, NY, USA, 2008. Association for Computing Ma-
chinery. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.126.4269&rep=rep1&type=pdf.

[25] Oded Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest
signature scheme. In Andrew M. Odlyzko, editor, Advances in Cryptol-
ogy — CRYPTO’ 86, pages 104–110, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg. https://link.springer.com/content/pdf/10.1007/
3-540-47721-7_8.pdf.

[26] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosys-
tems from lattice reduction problems. In Burton S. Kaliski, editor, Ad-
vances in Cryptology — CRYPTO ’97, pages 112–131, Berlin, Heidelberg,

65

https://whereisscihub.now.sh/go/10.1007/978-3-540-88403-3_8
https://whereisscihub.now.sh/go/10.1007/978-3-540-88403-3_8
https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B08.pdf
https://caislab.kaist.ac.kr/lecture/2010/spring/cs548/basic/B08.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-22792-9_43.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-22792-9_43.pdf
https://whereisscihub.now.sh/go/10.1007/11586821_8
https://link.springer.com/content/pdf/10.1007/978-3-642-40041-4_3.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-40041-4_3.pdf
https://sci-hub.se/10.1007/0-387-34805-0_24
https://link.springer.com/content/pdf/10.1007/978-3-540-78967-3_3.pdf
https://link.springer.com/content/pdf/10.1007/978-3-540-78967-3_3.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4269&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4269&rep=rep1&type=pdf
https://link.springer.com/content/pdf/10.1007/3-540-47721-7_8.pdf
https://link.springer.com/content/pdf/10.1007/3-540-47721-7_8.pdf

1997. Springer Berlin Heidelberg. https://link.springer.com/content/
pdf/10.1007/BFb0052231.pdf.

[27] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical” solu-
tion to the signature problem. In George Robert Blakley and David Chaum,
editors, Advances in Cryptology, pages 467–467. Springer Berlin Heidelberg,
1985. https://people.csail.mit.edu/rivest/pubs/GMR84b.pdf.

[28] Lov K. Grover. Quantum mechanics helps in searching for a needle in a
haystack. Physical review letters, 79(2):325, 1997. https://arxiv.org/
pdf/quant-ph/9706033.pdf.

[29] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems – CHES 2012, pages 530–547, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. https://link.springer.com/content/
pdf/10.1007/978-3-642-33027-8_31.pdf.

[30] Sean Hallgren and Ulrich Vollmer. Quantum computing, pages
15–34. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
http://www.ic.unicamp.br/~rdahab/cursos/mo421-mc889/2014-1s/
Welcome_files/Post%20Quantum%20Cryptography%20(Bernstein,
%20Buchmann,%20Dahmen,%202009).pdf#page=23.

[31] Andreas Hülsing. W-OTS+ – shorter signatures for hash-based signature
schemes. In Amr Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien,
editors, Progress in Cryptology – AFRICACRYPT 2013, pages 173–188,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. https://eprint.
iacr.org/2017/965.pdf.

[32] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal param-
eters for XMSSMT. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E.
Simos, Edgar Weippl, and Lida Xu, editors, Security Engineering and In-
telligence Informatics, pages 194–208, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg. https://eprint.iacr.org/2017/966.pdf.

[33] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target
attacks in hash-based signatures. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography –
PKC 2016, pages 387–416. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016. https://eprint.iacr.org/2015/1256.pdf.

[34] Hideki Imai and Tsutomu Matsumoto. Algebraic methods for construct-
ing asymmetric cryptosystems. In Jacques Calmet, editor, Algebraic
Algorithms and Error-Correcting Codes, pages 108–119, Berlin, Heidel-
berg, 1986. Springer Berlin Heidelberg. https://sci-hub.se/10.1007%
2F3-540-16776-5_713.

[35] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ECDSA). International journal of information
security, 1(1):36–63, 2001. https://pdfs.semanticscholar.org/c26e/
3c42c2a85e2479c1316ccc8c20754533e406.pdf.

66

https://link.springer.com/content/pdf/10.1007/BFb0052231.pdf
https://link.springer.com/content/pdf/10.1007/BFb0052231.pdf
https://people.csail.mit.edu/rivest/pubs/GMR84b.pdf
https://arxiv.org/pdf/quant-ph/9706033.pdf
https://arxiv.org/pdf/quant-ph/9706033.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-33027-8_31.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-33027-8_31.pdf
http://www.ic.unicamp.br/~rdahab/cursos/mo421-mc889/2014-1s/Welcome_files/Post%20Quantum%20Cryptography%20(Bernstein,%20Buchmann,%20Dahmen,%202009).pdf#page=23
http://www.ic.unicamp.br/~rdahab/cursos/mo421-mc889/2014-1s/Welcome_files/Post%20Quantum%20Cryptography%20(Bernstein,%20Buchmann,%20Dahmen,%202009).pdf#page=23
http://www.ic.unicamp.br/~rdahab/cursos/mo421-mc889/2014-1s/Welcome_files/Post%20Quantum%20Cryptography%20(Bernstein,%20Buchmann,%20Dahmen,%202009).pdf#page=23
https://eprint.iacr.org/2017/965.pdf
https://eprint.iacr.org/2017/965.pdf
https://eprint.iacr.org/2017/966.pdf
https://eprint.iacr.org/2015/1256.pdf
https://sci-hub.se/10.1007%2F3-540-16776-5_713
https://sci-hub.se/10.1007%2F3-540-16776-5_713
https://pdfs.semanticscholar.org/c26e/3c42c2a85e2479c1316ccc8c20754533e406.pdf
https://pdfs.semanticscholar.org/c26e/3c42c2a85e2479c1316ccc8c20754533e406.pdf

[36] Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Finding shortest
lattice vectors faster using quantum search. Designs, Codes and Cryptog-
raphy, 77(2):375–400, Dec 2015. https://link.springer.com/content/
pdf/10.1007/s10623-015-0067-5.pdf.

[37] Leslie Lamport. Constructing digital signatures from a one-way function.
Technical report, Technical Report CSL-98, SRI International Palo Alto,
1979. http://lamport.azurewebsites.net/pubs/dig-sig.pdf.

[38] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, pages 738–755, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. https://link.springer.com/content/pdf/10.1007/
978-3-642-29011-4_43.pdf.

[39] Robert J. McEliece. A public-key cryptosystem based on algebraic cod-
ing theory. Coding Thv, 4244:114–116, 1978. https://ntrs.nasa.gov/
archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf#page=123.

[40] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, edi-
tor, Advances in Cryptology — CRYPTO’ 89 Proceedings, pages 218–238,
New York, NY, 1990. Springer New York. https://link.springer.com/
content/pdf/10.1007%2F0-387-34805-0_21.pdf.

[41] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanal-
ysis of GGH and NTRU signatures. In Serge Vaudenay, editor, Advances in
Cryptology - EUROCRYPT 2006, pages 271–288, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. https://link.springer.com/content/pdf/
10.1007/11761679_17.pdf.

[42] Jacques Patarin. Cryptanalysis of the Matsumoto and Imai public key
scheme of Eurocrypt’88. In Don Coppersmith, editor, Advances in Cryp-
tology — CRYPT0’ 95, pages 248–261, Berlin, Heidelberg, 1995. Springer
Berlin Heidelberg. https://link.springer.com/content/pdf/10.1007/
3-540-44750-4_20.pdf.

[43] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, and
Robert Wisnieff. Leveraging secondary storage to simulate deep 54-qubit
sycamore circuits, 2019. https://arxiv.org/abs/1910.09534.

[44] Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signa-
tures with fast signing and verifying. In Lynn Batten and Jennifer Seberry,
editors, Information Security and Privacy, pages 144–153, Berlin, Heidel-
berg, 2002. Springer Berlin Heidelberg. https://eprint.iacr.org/2002/
014.pdf.

[45] Joost Rijneveld. Implementing SPHINCS with restricted memory. Mas-
ter’s thesis, Radboud University, May 2015. https://joostrijneveld.
nl/theses/sphincs_cortexm3/20150528_msc_sphincs_cortexm3.pdf.

[46] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2):120–126, 1978. https://apps.dtic.mil/dtic/tr/fulltext/
u2/a606588.pdf.

67

https://link.springer.com/content/pdf/10.1007/s10623-015-0067-5.pdf
https://link.springer.com/content/pdf/10.1007/s10623-015-0067-5.pdf
http://lamport.azurewebsites.net/pubs/dig-sig.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-29011-4_43.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-29011-4_43.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf#page=123
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780016269.pdf#page=123
https://link.springer.com/content/pdf/10.1007%2F0-387-34805-0_21.pdf
https://link.springer.com/content/pdf/10.1007%2F0-387-34805-0_21.pdf
https://link.springer.com/content/pdf/10.1007/11761679_17.pdf
https://link.springer.com/content/pdf/10.1007/11761679_17.pdf
https://link.springer.com/content/pdf/10.1007/3-540-44750-4_20.pdf
https://link.springer.com/content/pdf/10.1007/3-540-44750-4_20.pdf
https://arxiv.org/abs/1910.09534
https://eprint.iacr.org/2002/014.pdf
https://eprint.iacr.org/2002/014.pdf
https://joostrijneveld.nl/theses/sphincs_cortexm3/20150528_msc_sphincs_cortexm3.pdf
https://joostrijneveld.nl/theses/sphincs_cortexm3/20150528_msc_sphincs_cortexm3.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a606588.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a606588.pdf

[47] Peter W. Shor. Polynomial time algorithms for discrete logarithms and
factoring on a quantum computer. pages 289–289, 1994. https://adsabs.
harvard.edu/abs/1999SIAMR..41..303S.

[48] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota.
Birthday paradox for multi-collisions. In Min Surp Rhee and Byoungcheon
Lee, editors, Information Security and Cryptology – ICISC 2006, pages
29–40, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. https:
//sci-hub.se/10.1007/11927587_5.

[49] Joop van de Pol. Lattice-based cryptography. Master’s thesis, Eindhoven
Univ. of Technology, 2011. https://pure.tue.nl/ws/portalfiles/
portal/47023806/719274-1.pdf.

[50] Christopher Wolf and Bart Preneel. Taxonomy of public key schemes
based on the problem of multivariate quadratic equations. IACR Cryp-
tology ePrint Archive, 2005:77, 2005. https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.59.2940&rep=rep1&type=pdf.

[51] Bo-Yin Yang, Chen-Mou Cheng, Bor-Rong Chen, and Jiun-Ming Chen.
Implementing minimized multivariate PKC on low-resource embedded sys-
tems. In John A. Clark, Richard F. Paige, Fiona A. C. Polack, and Phillip J.
Brooke, editors, Security in Pervasive Computing, pages 73–88, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg. http://precision.moscito.
org/by-publ/recent/39340073.pdf.

68

https://adsabs.harvard.edu/abs/1999SIAMR..41..303S
https://adsabs.harvard.edu/abs/1999SIAMR..41..303S
https://sci-hub.se/10.1007/11927587_5
https://sci-hub.se/10.1007/11927587_5
https://pure.tue.nl/ws/portalfiles/portal/47023806/719274-1.pdf
https://pure.tue.nl/ws/portalfiles/portal/47023806/719274-1.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.2940&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.2940&rep=rep1&type=pdf
http://precision.moscito.org/by-publ/recent/39340073.pdf
http://precision.moscito.org/by-publ/recent/39340073.pdf

Appendix A

Fast and flexible
heterogeneous buffers in C

In a few places across the SPHINCS code base, a single byte buffer is used to
store heterogeneous data. For example, the API returns a SPHINCS signature
in a single byte buffer, but this buffer contains different, distinct elements like
the index of the used hypertree leaf, or the d WOTS signatures.

During development this pattern can become difficult to maintain, since the
positioning of each distinct element within this buffer depends on the order and
size of other elements. In practice, changing the order of elements in the buffer
required changes to the code in numerous places.

Using structs and a multitude of buffers instead of a single buffer would of
course make it much easier to access the various elements, but only at the cost
of not having the data stored in a continuous chunk of memory.

This section introduces a hybrid solution that can be useful in these situations.
The data can still be stored in a single buffer, but is easily accessible, as if it
was stored in a struct.

To show how this solution works in practice, consider a case where data about
cookie recipes should be stored in buffers. This data consists of four distinct
elements: The name, stored as a 32 bytes character array, the number of servings
and the calories, both stored as an int, and finally the URL that points to the
recipe, stored as a 2000 bytes character array.

First, a struct is defined that contains pointers to each element.
1 struct cookie_data {
2 unsigned char* name;
3 int* servings;
4 int* calories;
5 unsigned char* url;
6 };

Then, a function is defined that can populate such a struct.
1 #define NAME_BYTES 32

69

2 #define URL_BYTES 2000
3 #define COOKIE_BYTES (NAME_BYTES + sizeof(int) + \
4 sizeof(int) + URL_BYTES)
5
6 const struct cookie_data
7 init_cookie_data(unsigned char* buffer)
8 {
9 struct cookie_data data;

10 int offset = 0;
11
12 data.name = buffer + offset;
13 offset += NAME_BYTES;
14
15 data.servings = (int*) (buffer + offset);
16 offset += sizeof(int);
17
18 data.calories = (int*) (buffer + offset);
19 offset += sizeof(int);
20
21 data.url = buffer + offset;
22 offset += URL_BYTES;
23
24 assert(offset == COOKIE_BYTES);
25
26 return data;
27 };

Now elements of this buffer can be accessed like so:
1 int main(int nargs , const char** args)
2 {
3 unsigned char buffer[COOKIE_BYTES];
4
5 struct cookie_data data = init_cookie_data(buffer);
6
7 strncpy(data.name , "Hazelnut␣butter␣cookies", NAME_BYTES);
8 data.name[NAME_BYTES - 1] = 0;
9 *data.servings = 6;

10 *data.calories = 320;
11 strncpy(data.url ,
12 "https :// www.recipes.com/hazelnut -butter -cookies",
13 URL_BYTES);
14 data.url[URL_BYTES - 1] = 0;
15
16 printf("%s\n", data.name);
17 printf("%d\n", *data.servings);
18 printf("%d\n", *data.calories);
19 printf("%s\n", data.url);
20
21 return 0;
22 }

Adding elements, or changing the order of elements is as easy as changing the
offsets inside the function init_cookie_data.

An alternative solution is to have cascaded constants for the offsets of all ele-
ments:

1 #define OFFSET_NAME 0
2 #define OFFSET_SERVINGS (OFFSET_FLAVOR + NAME_BYTES)
3 #define OFFSET_CALORIES (OFFSET_SERVINGS + sizeof(int))
4 #define OFFSET_URL (OFFSET_CALORIES + sizeof(int))

70

This approach has the advantage that it does not require the initialization of a
struct to access elements of the buffer. However, it does not offer the convenience
that elements can be accessed by their type without explicit casting.

71

	Introduction
	Cryptographic hash functions
	Hash-based signature schemes
	Stateful vs stateless signature schemes

	Contributions and overview

	SPHINCS
	Hash trees
	Authentication paths
	L-trees

	The WOTS signature scheme
	WOTS Key generation
	WOTS Signing
	WOTS Verification

	The HORST signature scheme
	HORST Key generation
	HORST Signing
	HORST Verification
	The vagueness of ``few''

	simple-SPHINCS
	The SPHINCS hypertree
	Key generation
	Signing
	Verifying
	simple-SPHINCS-256
	Differences to SPHINCS

	Multi-target attacks in SPHINCS
	Multi-target attack surfaces in SPHINCS
	Mitigating multi-target attacks

	Reducing HORST signature size
	HORST signature size in SPHINCS
	HORST Authentication sets
	Combining authentication paths
	Authentication-set size
	Best-case and worst-case scenarios

	Implementing HORST with authentication sets
	Naïve implementation
	Efficient implementation
	Using authentication sets in HORST

	Practical aspects of HORST authentication sets

	Two approaches to short-term state in SPHINCS
	The benefit of state in SPHINCS
	Challenges of stateful signature schemes
	Short-term state in SPHINCS
	Approach 1: Iterate through lowest subtree
	Impact on security assumptions

	Approach 2: Add a short-term subtree below HORST
	Impact on security assumptions

	The two approaches in comparison
	Parameter discussion
	Sequential batch signing
	Subtree batch signing

	Creating successive short-term states

	Implementation and results
	Benefits of batch signing
	Results
	Utilization

	Conclusion

	Fast and flexible heterogeneous buffers in C

